Покоренный электрон
Шрифт:
Первый, третий, пятый… — все нечетные слои Фарадей соединил последовательно, и они составили одну общую катушку. Точно так же были соединены вторая, четвертая, шестая — все четные слои обмотки. В результате у Фарадея получились как бы две катушки, намотанные одна внутри другой и надежно изолированные друг от друга. Концы проводов от одной катушки были присоединены к чувствительному гальванометру, а концы другой катушки — к батарее.
Из опытов Ампера Фарадей знал, что наибольшим магнитным действием обладает проводник, свернутый спиралью или намотанный катушкой.
Поэтому он предполагал,
Присоединив катушку к батарее, Фарадей посмотрел на стрелку гальванометра, она стояла на нуле.
Ток шел по одной катушке и на другую катушку никакого влияния не оказывал (рис. 22).
Рис. 22. Прибор для повторения опыта Фарадея. В момент включения или выключения рубильника во внешней катушке проходит кратковременный ток.
Фарадей повторял опыт несколько раз, менял концы проводов у гальванометра и батарей. Все было безрезультатно.
Ожидания Фарадея не оправдались.
Ученого, который слепо преклоняется перед опытом, эта неудача заставила бы бросить начатую работу. Опыт не удается — ничего не поделаешь! Но Фарадей не принадлежал к таким ученым. «Если опыт не удался, — рассуждал Фарадей, — значит я не сумел его поставить. Ток должен влиять! Ток в одной катушке должен вызвать ответный ток во второй катушке!»
Фарадей упрямо продолжал опыты, кропотливо отыскивая причину неудач. Он продумывал каждую мелочь, каждое свое движение. На опыты ушло несколько лет настойчивого труда. Уже потеряв надежду на успех, Фарадей случайно обратил внимание на то, что он сначала присоединяет провода к батарее, а потом смотрит на гальванометр!
Оплошность!
Фарадей прикрутил провод катушки к одному полюсу батареи, поставил гальванометр так, чтобы можно было одновременно и присоединить второй провод и видеть стрелку гальванометра. Не сводя глаз со стрелки, Фарадей коснулся проводом полюса батареи. В момент соприкосновения стрелка гальванометра едва заметно вздрогнула.
Первый успех!
Фарадей коренным образом изменил свой прибор. Он намотал две медные изолированные спирали не на деревянный цилиндр, а на кольцо, сваренное из мягкого железа. Одна спираль охватывала правую половину кольца, вторая — левую. Между спиралями оставались небольшие промежутки железа. Иначе говоря, он сделал два электромагнита, для которых железное кольцо служило общим сердечником.
Концы проволок от одной спирали Фарадей прикрепил к гальванометру, затем, внимательно глядя на прибор, он подключил батарею ко второй спирали. Стрелка гальванометра не только дрогнула, она прыгнула, заметалась из стороны в сторону, далеко отлетая каждый раз от нуля. Стрелка как бы повторяла движения концов проводника, которые Фарадей держал в руках, и успокоилась только тогда, когда ученый поплотнее скрутил провода.
Это была долгожданная победа — плод беспримерного терпения, настойчивости и глубокого убеждения
После работ Ломоносова и Петрова открытие Фарадея было крупнейшим успехом науки об электричестве.
Единство магнитных и электрических явлений стало очевидным.
Явление, открытое Фарадеем, получило название электромагнитной индукции, то есть электромагнитного наведения или влияния.
Магнитное поле электрического тока
Опыт с магнитом и железными опилками известен с давних пор: магнит прикрывают бумажкой, а на бумагу насыпают железные опилки, и они, падая на бумагу, ложатся не бесформенной грудой, а собираются над полюсами магнита, составляя фигуру, слегка напоминающую двух многоногих пауков.
Опилки размещаются между полюсами и вокруг них по каким-то дорожкам. Магнитные силы заставляют частички металла сцепляться, укладываться вдоль магнитных «дорожек» цепочками, образуя симметричные узоры, состоящие из отдельных, правильно изогнутых линий (рис. 23).
Рис. 23. Магнит заставляет железные опилки располагаться вдоль магнитных силовых линий.
Если передвигать магнит под бумажкой с места на место, то и опилки будут перекатываться вслед за ним и располагаться в прежнем порядке вдоль дугообразных линий, окружающих полюсы магнита.
Эти дорожки-линии, по которым выстраиваются железные опилки, указывают направления, по которым действует магнитная сила.
Узор, составленный из опилок, дает наглядное представление о расположении магнитных силовых линий и доказывает, что магнит окружен магнитным полем, подобно тому, как электрический заряд окружен электрическим полем.
Магнитное поле представляет собой как бы продолжение магнита, его невидимую, но совершенно реальную материальную «оболочку». Если к северному полюсу магнита приближать северный полюс другого магнита, то сопротивление магнитных полей становится ощутимым — они пружинят, отталкивают, мешают соприкосновению одноименных полюсов.
Фарадей обнаружил, что не только природные магниты, но и каждый отрезок провода, по которому движутся электрические заряды, окружен со всех сторон кольцевыми силовыми линиями магнитного поля. Ученый доказал, что электрический ток всегда порождает магнитное поле вокруг проводника, по которому течет.
В существовании такого поля можно убедиться на опыте: проколоть кусок плотной бумаги иглой, продеть сквозь прокол провод и пропустить по нему сильный электрический ток (рис. 24).
Рис. 24. Электрический ток заставляет мелкие железные опилки укладываться возле проводника правильными кругами.
Если в это время сыпать на бумагу мелкие железные опилки, то они улягутся вокруг провода правильными концентрическими кольцами.