Покоренный электрон
Шрифт:
Один исследователь догадался взять для опыта предмет, состоящий из двух половинок — нечто вроде шара с разъемными полушариями (рис. 6).
Рис. 6. Половинки этого прибора приобретают разноименные заряды.
Он приблизил его к наэлектризованному предмету, а затем раздвинул половинки (каждая половина была укреплена на своей изолирующей подставке); ученый тем самым разделил заряды. Одно полушарие
Такой опыт доказал, что в каждом предмете действительно имеются и положительные и отрицательные заряды, но пока их в теле поровну и пока они распределены равномерно, тело остается нейтральным, а заряды, в нем содержащиеся, никак себя не проявляют. При электризации наведением, под воздействием наэлектризованного тела, заряды рассортировываются: положительные отходят в одну сторону, а отрицательные в другую — одноименные с наводящим зарядом отталкиваются, разноименные к нему притягиваются и стремятся приблизиться.
Другой исследователь захотел узнать, насколько ослабевает электрический заряд оттого, что он создает индуктированные заряды в окружающих его предметах.
Для опыта ученый взял большой металлический диск, положил его на стеклянную пластинку, наэлектризовал положительным электричеством и прикрыл другим куском стекла. Затем ученый взял другой такой же металлический круг, но только снабженный стеклянной рукояткой. Этот второй круг ученый положил поверх наэлектризованного диска, как изображено на рисунке 7.
Рис. 7. Заряд металлического диска, лежащего между стеклянными пластинками, оказался неистощимым.
Разумеется, круг при этом тоже наэлектризовался, то есть в нем разделились заряды: положительные скопились на верхней стороне круга, а отрицательные — на нижней.
Положительные заряды можно было отвести в землю, просто коснувшись круга рукой, тогда на круге остались только отрицательные заряды; их нельзя было удалить, — они удерживались притяжением положительным зарядом на нижнем круге.
Ученый взял этот круг за стеклянную рукоятку, отнес его в сторону и там разрядил. Затем снова положил свой круг поверх наэлектризованного диска, круг снова наэлектризовался, а ученый отнес его в сторону и разрядил.
Исследователь проделал это в третий раз, в четвертый… Ученый носил свой круг туда и сюда, попеременно то заряжая его у диска, то разряжая в стороне. Однако заряд металлического диска, лежавшего на стеклянной пластинке, от этого нисколько не ослабел.
Опыт пришлось прекратить, так как ученый устал таскать круг взад и вперед; он убедился, что истощить заряд металлического диска таким образом невозможно!
Этим опытом было установлено, что электрический заряд, индуктируя в других предметах наведенные заряды, сам не уменьшается и не расходуется.
Все это — и явление индукции, и явная неистощимость заряда, возбуждающего другие заряды, — было непонятно.
Люди придумывали различные, по большей части совершенно
Тогда многие физики считали, что электризация наведением является волшебным свойством электрических зарядов и они могут действовать на расстоянии, рождая другие заряды из ничего. Это мнение противоречило ломоносовскому закону сохранения материи, оно было глубоко ошибочным и заводило науку в тупик.
Электрическое поле
Удивительное явление получило правильное объяснение только тогда, когда физики поняли, что вокруг каждого наэлектризованного тела существует что-то такое, что воздействует на другие заряды. Это «что-то» ученые стали называть электрическим полем.
Электрическое поле неразрывно связано с зарядом, однако это не сам заряд. Поле составляет как бы своеобразное продолжение заряда в окружающем его пространстве. Поле отлично от заряда, но оно не менее реально, не менее материально, чем сам заряд.
Обнаружить существование электрического поля возле заряда можно весьма простым опытом. Для этого надо наклеить на стеклянную пластинку кружочек из станиоля или фольги, наэлектризовать его и посыпать мелкими игольчатыми кристалликами гипса или хинина. Кристаллики разложатся по линиям расходящимися лучами во все стороны от заряженного кружка. Если вырезать из фольги два кружка и им сообщить электрические заряды — одному положительный, а другому отрицательный, затем на стекло насыпать мелкие игольчатые кристаллики гипса, то под воздействием электрического поля иголочки гипса улягутся в определенном порядке; их расположение отчасти напоминает размещение железных опилок возле полюсов магнита (рис. 8).
Рис. 8. Кристаллики гипса расположены в определенном порядке между наэлектризованными кружками.
Одноименно заряженные кружки, когда их обсыпают гипсом, дадут картину электрического поля, изображенную на рисунке 9.
Рис. 9. Вид электрического поля между кружками, одноименно заряженными.
Благодаря гипсовым кристалликам электрическое поле между двумя наэлектризованными кружками становится видимым.
Академик А. Ф. Иоффе рассказывал, какой случай ему однажды пришлось наблюдать. Вместе с известным физиком К. Рентгеном Иоффе работал на вершине горы. И вдруг длинные волосы Рентгена распушились, а его большая борода взъерошилась так, что Рентген стал похожим на Черномора.
Внезапное превращение Рентгена в Черномора было вызвано большой тучей, проходившей в это время над вершиной горы. Туча несла с собой большой электрический заряд; между тучей и горой образовалось электрическое поле. Под влиянием этого поля волосы Рентгена расположились так же, как и кристаллики гипса между станиолевыми наэлектризованными кружочками, то есть вдоль так называемых силовых линий электрического поля.