Чтение онлайн

на главную

Жанры

Принцесса или тигр
Шрифт:

— Хочу найти? — воскликнул незнакомец с обидой. — Говорю вам, я почти нашел! Я почти придумал универсальную машину, которая сможет решать любые математические задачи! Имея такую машину, я буду знать все! Я смогу…

— А, мечта Лейбница! — сказал Крейг. — Лейбниц ведь тоже мечтал о такой машине. Боюсь только, что мечта эта неосуществима.

— Лейбниц! — презрительно усмехнулся незнакомец. — Лейбниц! Да он просто не знал, с чего начать! А у меня практически уже есть такая машина! Не хватает только нескольких мелочей… Но давайте я вам лучше поподробней расскажу

о своих идеях.

— Я хочу построить некую машину М, — начал объяснения незнакомец (как выяснилось, звали его Уолтон), — с вполне определенными свойствами: сначала вы вводите в машину натуральное число х, потом натуральное число у — и тут машина начинает работать и выдает некоторое новое число, которое мы будем обозначать как М(х, у). Итак, М(х, у) — это результат, который мы имеем на выходе машины М в том случае, если на ее входе в качестве первого числа задать число х, а в качестве второго — число у.

— Пока все ясно, — сказал Крейг.

— Кроме того, — продолжал Уолтон, — под словом «число» я понимаю произвольное положительное целое число, поскольку только эти числа я и буду рассматривать в дальнейшем. Как вам, должно быть, известно, обычно говорят, что два натуральных числа имеют одинаковую четность, если они одновременно либо оба четны, либо оба нечетны; если же одно из них четно, а другое нечетно, то их называют числами с различной четностью.

Теперь для любого числа х мы будем обозначать через х* число вида М(х, х). Так вот, я хочу, чтобы моя машина обладала следующими тремя свойствами.

Свойство 1. Для любого числа a должно существовать некоторое число b, такое, что при любом х число М(х, b) будет иметь ту же самую четность, что и число М(х*,а).

Свойство 2. Для любого числа b должно существовать некоторое число а, такое, что при любом х число М(х, а) будет иметь другую четность по сравнению с числом М(х, b).

Свойство 3. Должно существовать число h, такое, что при любом х число М(х, h) будет иметь ту же самую четность, что и само х.

— Вот такими свойствами должна обладать моя машина, — заключил Уолтон.

Инспектор Крейг некоторое время молчал, размышляя.

— Ну и в чем же дело? — спросил он наконец.

— Увы! — отвечал Уолтон. — Сначала я построил машину со свойствами 1 и 2, потом — машину со свойствами 1 и 3, наконец, я сконструировал машину со свойствами 2 и 3. Все три машины прекрасно работают — вон там, в портфеле, у меня подробные схемы… Но когда я пытаюсь объединить все три свойства в одной машине, у меня ничего не получается.

— Что же именно у вас не получается? — поинтересовался Крейг.

— Да она вообще не работает! — воскликнул Уолтон с отчаянием. — Когда я ввожу в нее пару чисел (х, у), то вместо того, чтобы выдать мне результат, машина вдруг начинает странно гудеть, как будто в ней происходит нечто вроде короткого замыкания. Как вы думаете, отчего это может быть?

— Да-а, — покачал головой Крейг. — Здесь есть над чем подумать. Правда, сейчас мне надо уйти, меня ждут, но если вы оставите мне свою

визитную карточку или просто фамилию и адрес, то я немедленно дам знать, как только во всем этом разберусь.

Через несколько дней инспектор Крейг написал Уолтону письмо. Начиналось оно так:

Дорогой мистер Уолтон!

Благодарю Вас за то, что вы посетили меня и рассказали о машине, которую пытались построить. Честно говоря, я не совсем понимаю, каким образом ваша машина, даже если бы вам действительно удалось ее создать, могла бы решать любые математические задачи, — хотя вы, несомненно, разбираетесь в этом лучше меня. Однако должен вам сказать, что ваш замысел напоминает мне попытку создания вечного двигателя — он также неосуществим! Фактически же дело обстоит гораздо хуже, чем с вечным двигателем. Ведь последний, несмотря на то что он невозможен в нашем физическом мире, все же не является логически невозможным. Машина же, которую хотите создать вы, невозможна не только физически, но и логически, поскольку те три свойства, о которых вы упоминали, содержат в себе определенное логическое противоречие.

Дальше Крейг объяснял, почему существование подобной машины логически невозможно. Можете ли вы сообразить, почему?

Полезно разбить решение этой задачи на три этапа:

1) показать, что для любой машины, обладающей свойством 1, при любом числе а должно существовать по крайней мере одно число х, такое, что число М(х, а) будет иметь ту же самую четность, что и само х;

2) показать, что для любой машины, обладающей свойствами 1 и 2, при любом числе b найдется некоторое число х, такое, что число М(х, b) будет иметь иную четность по сравнению с этим х;

3) ни одна машина не может объединить в себе свойства 1, 2 и 3.

Решение

а) Рассмотрим машину, обладающую свойством 1. Возьмем произвольное число а; тогда, согласно свойству 1, найдется число b, такое, что при любом х число М(х, b) будет иметь ту же самую четность, что и число М(х* а). В частности, если положить х равным b, то число M(b, b) будет обладать той же самой четностью, что и число М(b*, а). Однако число М(b, b) — это просто b*, и, значит, число b* должно иметь ту же самую четность, что и число М(b*, а). Таким образом, положив х равным числу b*, мы видим, что число М(х, а) имеет ту же самую четность, что и само число х.

б) Рассмотрим теперь некоторую машину, обладающую свойствами 1 и 2. Возьмем произвольное число b; тогда, согласно свойству 2, обязательно найдется число a, такое, что при любом х число М(х, а) будет иметь другую четность по сравнению с числом М(х, b). Но, согласно свойству 1, существует по крайней мере одно х, при котором число М(х, а) имеет ту же самую четность, что и само х, — мы только что доказали это в пункте а. Такое число х должно иметь другую четность по сравнению с числом М(х, a), поскольку оно одинаково по четности с числом М(х, а), а М(х, а) в свою очередь имеет иную четность по сравнению с числом М(х, b).

Поделиться:
Популярные книги

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Последний попаданец 3

Зубов Константин
3. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 3

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора