Профессия: переводчик
Шрифт:
Кроме того, соответствие слов разных языков друг другу не является однозначным, т.е. одному слову языка А может соответствовать несколько слов языка В и наоборот. Следовательно, в переводящем автомате необходимо предусмотреть программу выбора правильного эквивалента.
Такие программы обычно основываются на двух принципах:
1. На принципе выбора эквивалента по синтаксической модели входного текста, чаще всего по синтаксической модели предложения. Таким образом, например, автомат может различить эквиваленты глагола "to book" и существительного "book" (соответственно, "резервировать" и "книга").
2.
В некоторых более сложных системах в дополнение к этим двум принципам выбора эквивалента применяют также и принцип выбора на основе внелингвистической (фоновой) информации. Модели для выбора эквивалентов, работающие по этому принципу, еще сложнее: их относят к разряду моделей искусственного интеллекта.
В зависимости от сложности выбора правильного зна-
чения слов и, соответственно, правильного переводного эквивалента модели и системы машинного перевода можно разделить на три уровня.
К первому, низшему уровню относятся простейшие модели пословно-пооборотного перевода, в которых выбор эквивалентов не производится и на выход системы перевода поступают все переводные эквиваленты, имеющиеся в словаре.
Системы второго уровня, к которым относятся почти все так называемые "электронные переводчики", имеющиеся на современном рынке программного обеспечения, используют ту или иную комбинацию синтаксических и семантических моделей для выбора правильного эквивалента и преобразования структуры входного текста в структуру текста перевода.
Наконец, модели третьего уровня в дополнение к грамматике и семантике применяют для синтеза текста перевода также и фоновые знания. Надо сказать, что модели и системы этого уровня до сих пор находятся на стадии эксперимента.
Для того чтобы яснее представить себе возможности систем разного уровня и качество перевода, которое вы можете получить с их помощью, давайте проведем аналогию между действиями автомата и человека.
Системы низшего уровня можно сравнить с человеком, который, пользуясь словарем и таблицей словоизменения (списком правил и форм спряжения и склонения), переводит текст на совершенно незнакомом ему языке,
Система действует так же, как действуем в этом случае мы. Берет первое слово, смотрит, есть ли оно в словаре в таком виде. Если есть, выписывает все его переводы, если нет, то ищет в таблице словоизменения форму слова, обнаруженную в тексте, определяет соответствующую словарную форму и выписывает все переводы. Затем берет следующее слово и т.д.
В данном случае отличие от перевода, выполняемого человеком, состоит
свинец / лот / грузило / вести / руководить / лидировать / руководство / лидерство / проводник; всасывать / впитывать абсорбировать / амортизировать / поглощать; излучение/ радиация',
Системы второго уровня по своим действиям напоми-нают более или менее опытного переводчика, который переводит текст на совершенно непонятную ему тему. Подобно такому переводчику система сможет отбросить наиболее неподходящие эквиваленты на основе анализа синтаксиса и семантики, причем глубина и точность такого анализа у автомата будет зависеть от совершенства и полноты моделей так же, как у переводчика, она зависит от полноты его профессиональных знаний.
Но так же, как переводчик, который совершенно не понимает содержания переводимого текста, переводящий автомат этого уровня не сможет сделать выбор экви-валентов на основе фоновой информации.
Можно, например, предположить, что такая система на сновании анализа грамматического контекста (два глаго-на подряд), переводя предложение "Lead absorbs radiation", исключит глаголы в качестве эквивалентов слова "lead". To есть получит на выходе промежуточный текст: свинец / лот / грузило / руководство / лидерство / проводник; всасывать / впитывать абсорбировать / амортизировать / поглощать; излучение/ радиация. Можно также предположить, что на основе элементар-ного анализа семантики субъекта "lead" и предиката "absorbs" и семантических отношений между ними переводящий автомат исключит эквиваленты "руководство" и "лидерство", т.е. получит на выходе:
свинец / лот / грузило / проводник; всасывать / впитывать / абсорбировать / амортизировать / поглощать; излучение /радиация.
После грамматического согласования перевод этого предложения, сделанный системой второго уровня, будет выглядеть приблизительно так:
свинец (лот / грузило / проводник) всасывает (впитывает / абсорбирует / амортизирует / поглощает) излучение (радиацию).
А вот сделать выбор между словами "свинец", "лот", "грузило" и "проводник", между эквивалентами "всасывает", "впитывает", "абсорбирует", "амортизирует", "поглощает", а также между частичными синонимами "излучение" и "радиация" переводящий автомат этого уровня не сможет, так как такой выбор можно сделать лишь на основе фоновых (т.е. специальных) знаний.
Выше я написал, что перевод, выполненный синтакти-ко-семантической системой машинного перевода будет иметь приблизительно такой-то и такой-то вид. И это правильно, так как приведенный здесь пример относится к конкретному случаю перевода, выполненного определенной системой, точнее системой, которую я сам разработал и знаю, что от нее можно ожидать36.
Не исключено, что другие, более совершенные системы смогут провести более тонкий синтактико-семантический анализ и отбросить некоторые неподходящие эквиваленты. Не это важно.