Программирование на языке Пролог для искусственного интеллекта
Шрифт:
9.5. Графы
9.5.1. Представление графов
Графы используются во многих приложениях, например для представления отношений, ситуаций или структур задач. Граф определяется как множество вершин вместе с множеством ребер, причем каждое ребро задается парой вершин. Если ребра направлены, то их также называют дугами. Дуги задаются упорядоченными парами. Такие графы называются направленными.
В Прологе графы можно представлять различными способами. Один из них — каждое ребро записывать в виде отдельного предложения. Например, графы, показанные на рис. 9.18, можно представить в виде следующего множества предложений:
Другой способ — весь граф представлять как один объект. В этом случае графу соответствует пара множеств — множество вершин и множество ребер. Каждое множество можно задавать при помощи списка, каждое ребро — парой вершин. Для объединения двух множеств в пару будем применять функтор
Рис. 9.18. (а) Граф. (b) Направленный граф. Каждой дуге приписана ее стоимость.
Для представления направленного графа (рис. 9.18), применив функторы
Если каждая вершина графа соединена ребром еще по крайней мере с одной вершиной, то в представлении графа можно опустить множество вершин, поскольку оно неявным образом содержится в списке ребер.
Еще один способ представления графа — связать с каждой вершиной список смежных с ней вершин. В этом случае граф превращается в список пар, каждая из которых состоит из вершины- плюс ее список смежности. Наши графы (рис. 9.18), например, можно представить как
Здесь символы '
Какой из способов представления окажется более удобным, зависит от конкретного приложения, а также от того, какие операции имеется в виду выполнять над графами. Вот типичные операции:
• найти путь между двумя заданными вершинами;
• найти подграф, обладающий некоторыми заданными свойствами.
Примером последней операции может служить построение основного дерева
9.5.2. Поиск пути в графе
Пусть G — граф, а А и Z — две его вершины. Определим отношение
где P — ациклический путь между А и Z в графе G. Если G — граф, показанный в левой части рис. 9.18, то верно:
Поскольку путь не должен содержать циклов, любая вершина может присутствовать в пути не более одного раза. Вот один из методов поиска пути:
Для того, чтобы найти ациклический путь P между А и Z в графе G, необходимо:
Если А = Z , то положить P = [А], иначе найти ациклический путь P1 из произвольной вершины Y в Z, а затем найти путь из А в Y, не содержащий вершин из P1.
В этой формулировке неявно предполагается, что существует еще одно отношение, соответствующее поиску пути со следующий ограничением: путь не должен проходить через вершины из некоторого подмножества (в данном случае P1) множества всех вершин графа. В связи с этим мы определим ещё одну процедуру:
Аргументы в соответствии с рис. 9.19 имеют следующий смысл:
• А — некоторая вершина,
• G — граф,
• P1 — путь в G,
• P — ациклический путь в G, идущий из А в начальную вершину пути P1, а затем — вдоль пути P1 вплоть до его конца.
Pис. 9.19. Отношение
Между
На рис. 9.19 показана идея рекурсивного определения отношения
(1) Y — вершина, смежная с X,
(2) X не содержится в P1 и
(3) для P выполняется отношение
Рис. 9.20. Поиск в графе