Чтение онлайн

на главную

Жанры

Программирование на языке Пролог для искусственного интеллекта

Братко Иван

Шрифт:

истинна только тогда, когда существует путь из множества кандидатов

Пути
, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть
Решение
.

11.3.1. Списковое представление множества кандидатов

В нашей первой реализации этой идеи мы будем использовать следующее представление для множества путей-кандидатов. Само множество будет списком путей, а каждый путь - списком вершин, перечисленных в обратном порядке, т.е. головой списка будет самая последняя

из порожденных вершин, а последним элементом списка будет стартовая вершина. Поиск начинается с одноэлементного множества кандидатов

[ [СтартВерш] ]

решить( Старт, Решение) :-

 вширину( [ [Старт] ], Решение).

вширину( [ [Верш | Путь] | _ ], [Верш | Путь] ) :-

 цель( Верш).

вширину( [ [В | Путь] | Пути], Решение ) :-

 bagof( [B1, В | Путь ],

 ( после( В, В1), not принадлежит( В1, [В | Путь])),

НовПути),

% НовПути - ациклические продолжения пути [В | Путь]

 конк( Пути, НовПути, Пути1), !,

 вширину( Путь1, Решение);

 вширину( Пути, Решение).

% Случай, когда у В нет преемника

Рис. 11.10. Реализации поиска в ширину.

Общие принципы поиска в ширину таковы:

Для того, чтобы выполнить поиск в ширину при заданном множестве путей-кандидатов, нужно:

• если голова первого пути — это целевая вершина, то взять этот путь в качестве решения, иначе

• удалить первый путь из множества кандидатов и породить множество всех возможных продолжений этого пути на один шаг; множество продолжений добавить в конец множества кандидатов, а затем выполнить поиск в ширину с полученным новым множеством.

решить( Старт, Решение) :-

 вширь( [ [Старт] | Z ]-Z, Решение).

вширь( [ [Верш | Путь] | _ ]-_, [Верш | Путь] ) :-

 цель( Верш).

вширь( [ [В | Путь] | Пути]-Z, Решение ) :-

 bagof( [B1, В | Путь ],

 ( после( В, В1),

not принадлежит( В1, [В | Путь]) ),

Нов ),

 конк( Нов, ZZ, Z), !,

 вширь( Пути-ZZ, Решение);

 Пути \== Z, % Множество кандидатов не пусто

 вширь( Пути-Z, Решение).

Рис. 11.11. Программа поиска в ширину более эффективная, чем программа рис. 11.10. Усовершенствование основано на разностном представлении списка путей-кандидатов.

В случае примера рис.11.9 этот процесс

будет развиваться следующим образом:

(1) Начинаем с начального множества кандидатов:

[ [а] ]

(2) Порождаем продолжения пути

[а]
:

[ [b, а], [с, а] ]

(Обратите внимание, что пути записаны в обратном порядке.)

(3) Удаляем первый путь из множества кандидатов и порождаем его продолжения:

[ [d, b, a], [e, b, а] ]

Добавляем список продолжений в конец списка кандидатов:

[ [с, а], [d, b, a], [e, b, а] ]

(4) Удаляем 

[с, а]
, а затем добавляем все его продолжения в конец множества кандидатов. Получаем:

[ [d, b, a], [e, b, а], [f, c, a], [g, c, a] ]

Далее, после того, как пути

[d, b, a]
и
[e, b, а]
будут продолжены, измененный список кандидатов примет вид

[[f, c, a], [g, c, a], [h, d, b, a], [i, e, b, a], [j, e, b, a]]

В этот момент обнаруживается путь

[f, c, a]
, содержащий целевую вершину
f
. Этот путь выдается в качестве решения.

Программа, порождающая этот процесс, показана на рис. 11.10. В этой программе все продолжения пути на один шаг генерируются встроенной процедурой

bagof
. Кроме того, делается проверка, предотвращающая порождение циклических путей. Обратите внимание на то, что в случае, когда путь продолжить невозможно, и цель
bagof
терпит неудачу, обеспечивается альтернативный запуск процедуры
вширину
. Процедуры
принадлежит
и
конк
реализуют отношения принадлежности списку и конкатенации списков соответственно.

Недостатком этой программы является неэффективность операции

конк
. Положение можно исправить, применив разностное представление списков (см. гл. 8). Тогда множество путей-кандидатов будет представлено парой списков
Пути
и
Z
, записанной в виде

Пути-Z

При введении этого представления в программу рис. 11.10 ее можно постепенно преобразовать в программу, показанную на рис. 11.11. Оставим это преобразование читателю в качестве упражнения.

11.3.2. Древовидное представление множества кандидатов

Рассмотрим теперь еще одно изменение нашей программы поиска в ширину. До сих пор мы представляли множества путей-кандидатов как списки путей. Это расточительный способ, поскольку начальные участки путей являются общими для нескольких из них. Таким образом, эти общие части путей приходится хранить во многих экземплярах. Избежать избыточности помогло бы более компактное представление множества кандидатов. Таким более компактным представлением является дерево, в котором общие участки путей хранятся в его верхней части без дублирования. Будем использовать в программе следующее представление дерева. Имеется два случая:

Поделиться:
Популярные книги

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Дайте поспать! Том II

Матисов Павел
2. Вечный Сон
Фантастика:
фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать! Том II

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Менталист. Революция

Еслер Андрей
3. Выиграть у времени
Фантастика:
боевая фантастика
5.48
рейтинг книги
Менталист. Революция

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век