Чтение онлайн

на главную

Жанры

Шрифт:

Кино делает очевидной условную симметрию течения времени. Если на плёнке зафиксировано падение шарика или раз ряд молнии, то, прокручивая плёнку в обратном направлении (обратив течение времени), мы увидим, как шарик поднимается вверх, а молния постепенно укорачивается и исчезает.

Конечно, и не прибегая к обращению времени, можно заставить шарик изменить направление движения и лететь вверх. Для этого достаточно толкнуть его снизу вверх. Но существуют процессы, идущие лишь в одном направлении. Например, горение. Только в кино (двигая плёнку в обратном направлении) можно увидеть, как горящая спичка

удлиняется, а потом пламя гаснет и спичка вновь оказывается целой. Термодинамика описывает этот процесс. Но она не объясняет необратимость времени. Наоборот, необратимость времени лежит в основе термодинамики.

Поэтому невозможно получить термодинамику из механики. Невозможно именно потому, что в механике не заложена необратимость времени.

В школе, по традиции, вначале изучают механику, затем электричество, магнетизм и только потом начатки электродинамики. Так в нашем сознании формируется дробление науки. Позднее нам трудно почувствовать и осознать единство природы, связи между различными отраслями науки, изучающими природу с различных точек зрения.

Поговорим о волнах. О видимых волнах, бегущих по поверхности воды. О невидимых, но слышимых волнах звука. О невидимых и неслышимых радиоволнах.

Вспомним об океанских волнах, вид которых произвёл огромное впечатление на молодого Ньютона, дав ему понять необозримость неведомого и ограниченность человеческих усилий. И ещё вспомним слова Козьмы Пруткова: «Бросая в воду камешки, смотри на круги, ими образуемые; иначе такое бросание будет пустою забавою».

Последуем же совету премудрого Козьмы.

Бросим маленький камешек в самую середину кастрюльки, наполненной водой. В месте его падения возникнут разбегающиеся кольцевые волны. Об этих кругах и говорил мудрец. Добежав до стенок, они повернут обратно.

Если камень попал в центр кастрюльки, а её стенки не деформированы, волны, отразившись от стенок, побегут назад, оставаясь круговыми, и будут повторять свой путь раз за разом, как бы отражаясь от центра. Если не обращать внимания на медленное затухание волн, вызванное превращением их энергии в тепло, то картина будет многократно повторяться. Теперь невозможно узнать, родились ли волны в центре или их каким-то образом породили стенки кастрюльки. Если снять кинофильм, то изображения, видимые при движении киноплёнки в любом направлении, неотличимы от видимых при противоположном направлении движения киноплёнки. Так проявляется независимость механических явлений от направления во времени.

Если же стенки кастрюльки деформированы, то после первого прохода волны перестанут быть круговыми, и вскоре поверхность воды окажется покрытой хаотической рябью. Теперь снятый кинофильм утратит обратимость: просматривая его в одном направлении, мы увидим, что рябь становится всё более хаотичной, а при противоположном направлении хаос будет упрощаться и картина будет всё более регулярной. Не приводит ли в данном случае нерегулярная деформация стенки к необратимости процесса во времени? Это важный вопрос, но оставим его на дальнейшее.

Подобная рябь возникнет и в том случае, когда стенки кастрюльки идеально круглые, но на её дне имеются бугры и впадины, а слой воды так тонок, что наиболее высокие бугры едва покрыты водой. Даже если камешек падает точно в центре,

круги будут деформированы уже при первом проходе. Так действует зависимость скорости распространения волны от глубины воды. При следующих проходах отличие фронта волны от круговой симметрии будет всё более возрастать.

Заметив это, естественно приходишь к вопросу: можно ли сделать так, чтобы и в кастрюльке с деформированным дном волны собирались в её центре?

Этот вопрос наверное не возник бы или оказался забытым, если бы речь шла только о волнах в кастрюльке.

Иное дело, когда речь идёт о световых волнах, особенно о волнах, испускаемых лазером.

Излучение лазера обладает большой упорядоченностью. Особенно упорядочены лучи газовых лазеров. Причина — высокая однородность газов по сравнению с твёрдым телом, например со стеклом или кристаллом. Чем однороднее рабочее вещество лазера, тем меньше расходится световой пучок, тем меньше разброс длин волн, излучаемых лазером. Тем легче собрать излучение лазера в маленькое пятнышко. А это бывает необходимо во многих случаях применения лазеров. Тем меньше ослабевает интенсивность лазерного излучения с увеличением расстояния. Это особенно важно при применении лазерных маяков в навигации или лазерных нивелиров в геодезии и при строительных работах.

Физиков давно преследовало желание совместить в одном приборе два качественных преимущества разных лазеров: способность стеклянных лазеров к генерации световых пучков, обладающих большой энергией, с малой расходимостью пучков, присущей газовым лазерам.

Уже первые оценки показали, что главным препятствием здесь являются неоднородности оптических свойств среды, в которой распространяются лучи лазера. Таковы неоднородности показателя преломления атмосферы, вызывающие отклонения лучей света от прямой линии и искажение фронта световых волн.

Конструкторы много работают над тем, чтобы повысить энергию, излучаемую компактными твердотельными лазерами, без ухудшения «качества» их излучения. Почему это так важно?

Энергия излучения лазера непосредственно связана с объёмом вещества, охваченного процессом генерации этого излучения. Но чисто технологические причины приводят к тому, что величина внутренних неоднородностей в лазерном веществе увеличивается с ростом его объёма. Увеличение внутренних неоднородностей в свою очередь приводит к ухудшению «качества» лазерного излучения. Излучение, выходящее из лазера, становится более неоднородным по сечению светового пучка. Пучок быстрее расширяется по мере удаления от лазера. А спектр излучения становится более широким (в нём присутствует большее число световых волн, различающихся своей длиной).

Казалось, этого можно избежать при помощи лазера, содержащего очень малый объём активного лазерного вещества. Ведь его несложно сделать однородным, а значит, «качество» генерируемого излучения станет высоким. Затем, конечно, нужно пропустить излучение этого лазера-генератора через мощный лазер — усилитель. Но надежда на то, что таким путём можно получить высококачественное мощное лазерное излучение, эфемерна. Ведь мощный лазер-усилитель должен содержать большой объём активного лазерного вещества. А это неизбежно приводит к увеличению неоднородности усиленного лазерного пучка.

Поделиться:
Популярные книги

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Последний попаданец 3

Зубов Константин
3. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 3

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора