Проклятые вопросы
Шрифт:
Жизнь мчится вперёд. Возможности экспериментальной науки растут. Человек сталкивается со всё более неожиданными проявлениями жизни Вселенной, где происходят невероятные катастрофы, взрывы звёзд и целых галактик, где существуют непонятные квазары, где фантастические чёрные дыры высасывают из Вселенной массу и энергию. Все эти проблемы не только обсуждаются на симпозиумах, в научной печати, но и через прессу, телевидение, радио, захватывают рядового человека.
В какие потусторонние миры перекачивается вещество из нашего мира? Какова природа колоссально щедрых источников, которые необъяснимо мощно исторгают в просторы космоса такие количества вещества и энергии, словно взорвались
Новые открытия в традиционной физике… новые наблюдения в астрофизике… необъяснимые ситуации в физике элементарных частиц… Ответят ли новые теории на вновь возникшие вопросы? Создаются ли они уже? Кто их авторы? В круг этих проблем вовлечены не только профессионалы, но и молодые и немолодые читатели научно-популярных книг и журналов. Это — одна из новых примет нашего времени. Это — дыхание ветра научно-технической революции, формирующего интеллектуальную погоду на нашей планете.
…Сегодняшняя физика набухает новыми моделями мира, свежими идеями, переоценкой старых истин. Поток докладов, статей, книг по вопросам, затронутым теорией относительности Эйнштейна, растёт и ширится. Современная научная литература по мирозданию — настоящее интеллектуальное пиршество. Но даже на нём среди удивительных и сенсационных научных «блюд» объёмистый труд под лаконично-привычным названием «Теория относительности, основанная на физической реальности» — незаурядное явление, которое привлекло внимание самых авторитетных учёных современности. Они не могли не задуматься о том, что же нового привнёс его автор, венгерский мыслитель, в науку грядущего?
— Каков ваш критерий истины? — спросила я академика Яноши.
— Чтобы найти общий язык в такой сложной области, как философия, надо спорить, доказывать, критиковать, — ответил он. — Ведь только в споре рождается истина, в столкновении мнений, в столкновении теории и эксперимента, в проверке одного другим…
Последний разговор с Яноши состоялся незадолго до его кончины. Тогда он сказал мне:
— Я с нетерпением жду, когда книга о теории относительности, главный мой труд, отнявший у меня десять лет жизни, будет переведена на русский язык. Мне очень важно знать мнение советских коллег, серьёзных оппонентов, о моей системе мира. Я рад, что в СССР хорошо приняты мои прежние книги: «Космические лучи» и «Теория и практика обработки результатов измерений». Каждая из них тоже явилась итогом десятилетней работы. Но последняя книга — моя лебединая песнь. И её мне особенно хотелось обсудить с советскими физиками, которых я уважаю и мнением которых дорожу. Ведь советская школа физиков — одна из сильнейших в мире.
…Среднего роста, с усталым бледным лицом человека, мало бывающего на свежем воздухе, Яноши был, пожалуй, незаметен в толпе. Незаметен до тех пор, пока вы не обращали внимание на его глаза. Они смотрели за пределы близко лежащих вещей. Помню, я подумала, когда впервые познакомилась с ним: может быть, он разглядит, куда попадёт копьё греческого воина, брошенное в космос с исполинской силой? Решит проблемы, поставленные ещё древними греками и не решённые до сих пор?
Ему не суждено было сделать этого до конца. Но наука сильна своей преемственностью. Учёные умирают, а мысли, воплощённые в теории, в гипотезы, остаются их ученикам. Додумываются преемниками, единомышленниками.
Октябрь 1988 года. Я вновь в Будапеште, в лаборатории, которую основал академик Яноши. И вновь с его учеником, доктором наук Петером
А теперь вернёмся в область науки о космических лучах, в которую Яноши и Скобельцын внесли решающий вклад и которая продолжает набираться сил и информации.
Наблюдая в камере Вильсона сотни, тысячи быстрых частиц, изучая форму их следов, определяя массу, энергию, заряд и другие характеристики, учёные узнали, что большинство космических частиц — это ядра водорода, протоны, меньшинство — ядра других элементов. Учёные убедились, что космические частицы не такая уж редкость. Но прежде чем они достигнут поверхности Земли, в атмосфере происходят миллиарды столкновений между ними и атомами воздуха. При этом завязываются и разрываются невидимые связи между космическими частицами и электромагнитными полями атомов.
Ведь только нам, жителям большого мира, кажется, что воздух прозрачен и бесплотен. Для космических частиц, обитательниц микромира, воздух густ, как самый дремучий лес, полон препятствий, насыщен силами притяжения и отталкивания.
Космическая частица, попав в земную атмосферу, испытывает каскад удивительных превращений. Например, столкнувшись с ядром азота или кислорода воздуха, она может разбить его и породить новые частицы, передав им свою энергию. Те в свою очередь тоже могут разбить ряд ядер. Так, по мере приближения к поверхности Земли, постепенно увеличивается число частиц. Лавина растёт, охваченная порывом этой своеобразной цепной реакции.
Наиболее прозорливые учёные поняли, что в разгадке свойств космических частиц содержится ответ не только на космические проблемы, но и на чисто земные вопросы. И в частности, в них таится возможность подхода к тайнам строения атомного ядра. Эти учёные решили использовать космические частицы как орудие для разрушения атомных ядер.
Очень хорошо, рассуждали они, что космос позаботился доставить нам частицы колоссальных энергий. Ведь мы ещё не умеем у себя на Земле фабриковать такие снаряды. Используем же их в качестве своеобразного молотка, разбивающего атомы, или в качестве микроскопической бомбы, взрывающей ядра атомов, и посмотрим, что у них внутри!
Ведь при попадании первичной космической частицы в атмосферу рождаются массы разнообразных частиц, и среди них могут быть ещё неизвестные! Кроме того, космические частицы обладают такой колоссальной энергией, что, влетев в земную атмосферу, не только «сдирают» электроны с попавшихся по пути атомов, но и вдребезги разбивают ядра некоторых из них. Если суметь проанализировать процессы ядерных и электромагнитных взаимодействий при таких высоких энергиях, можно, наконец, пролить свет на структуру материи, её элементарных частиц!
Но чтобы «взвесить» все эти вновь рождённые частицы, определить их массу, энергию, скорость, учёным приходилось быть не менее изобретательными, чем их коллегам, которые решали задачу о взвешивании Земли и других планет.
Однако техника эксперимента совершенствовалась. В помощь камере Вильсона появились и другие приборы: автоматические установки с ионизационными камерами, в которых космические частицы вызывали электрический разряд разной величины; фотоэмульсии, в которых благодаря почернению зёрен серебра можно было выследить почти всех участников микроскопической катастрофы; счётчики Черенкова и различные комбинации этих приборов с радиотехническими схемами; конструкции Яноши.