Проклятые вопросы
Шрифт:
Учёным не оставалось ничего иного, как предположить источником таинственного излучения космический мазер, созданный самой природой. Это была самая настоящая неожиданная сенсация.
Расчёты показали, что радиоастрономы действительно обнаружили природный мазер. Оказалось, что в облаке, содержащем молекулы гидроксила, при его освещении интенсивным инфракрасным излучением близких звёзд действительно возникают условия для возникновения мазерного излучения. Причём это происходит на частоте 1,665 МГц, а не на частоте 1,667 МГц, соответствующей излучению облака гидроксила, нагретого до температуры «всего» в несколько тысяч градусов.
Не будем
Красные переменные звёзды являются гигантами потому, что в них уже иссякают запасы водорода, необходимые для протекания термоядерных реакций, поддерживающих высокую температуру и большое давление внутри звезды. При этом гравитационные силы стягивают вещество звезды по направлению к её центру. В результате возникают ударные волны, приводящие к временному перегреву внешних слоёв и вызывающие периодические выбросы вещества в межзвёздное пространство. Мы наблюдаем при этом периодическое увеличение и уменьшение яркости звезды.
Первая изученная в 1957 году красная переменная звезда расположена в созвездии Кита и носит наименование Мирра. В каталогах она значится как Мирра Кита. Затем были обнаружены другие аналогичные звёзды, периоды изменения яркости которых лежат в пределах от 200 до 500 дней. От них отличаются другие красные переменные, имеющие ещё большую массу, сверхгиганты. Они обладают и большей светимостью, а период колебаний их яркости менее регулярен и лежит в пределах от 500 до 1000 дней.
Общим для этих двух подклассов является сравнительно низкая температура — около 2000 К (напоминаю: К означает «градусов Кельвина»). Температура светящейся поверхности Солнца составляет 6000 К, поэтому Солнце излучает наиболее интенсивно на волне 0,5 мкм в жёлто-зелёной области спектра. Красные гиганты и сверхгиганты излучают наиболее интенсивно на волне 1,5 мкм в невидимом инфракрасном участке спектра, причём на этой волне излучается значительно большая доля энергии, чем это было для наблюдаемой средней температуры 2000 К. Обнаружение такого избытка поставило учёных на некоторое время в тупик. Но излучение различных математических моделей атмосферы красных гигантов показало, что в ней находится значительное количество газов, выброшенных из её нижних слоёв ударными волнами, а затем остывших и образовавших молекулы и пылевидные частицы, имеющие температуру в несколько сотен градусов Кельвина.
В этих условиях вследствие интенсивного возбуждения инфракрасным излучением звезды молекулы гидроксила становятся активной средой мазера, излучающего ярче всего на частоте 1,612 МГц. Этот звёздный мазер излучает также на частоте 1,665 МГц, характерной для мазеров в межзвёздных облаках и на частоте 1,667 МГц.
В 1969 году в созвездии Большого Пса, видном в Южном полушарии, была обнаружена звезда, являющаяся звездным мазером на частоте 22,235 МГц (волна 1,35 сантиметра), характерной для молекул воды. Затем были обнаружены ещё много звёздных мазеров,
Наиболее сенсационным открытием в этой области было обнаружение ряда переменных звёзд, обладающих мазерным излучением в миллиметровом диапазоне. Это излучение было первоначально отождествлено с молекулой моноокиси кремния, одной из наименее распространённых в космосе. Мнения учёных разделились. Одни соглашались с тем, что это звёздный мазер, но утверждали, что молекулы моноокиси кремния ни при чём. Другие считали, что излучение обусловлено моноокисью кремния, но не является мазерным. Потребовалось проведение тщательных наблюдений, расчётов и сопоставлений, чтобы доказать правильность первоначального предположения: это звёздный мазер, в котором излучают молекулы моноокиси кремния, находящейся при температуре свыше 1000 К.
Открытие звёздных мазеров дало астрофизикам новый источник информации. Линии излучения гидроксильных звёздных мазеров почти всегда разделяются на две группы, частоты которых слегка сдвинуты между собой. Одна группа — в сторону более высоких, а другая — в сторону более низких частот, совсем как это бывает со звуком гудка приближающегося и удаляющегося паровоза. Это несомненно эффект Допплера, а сдвиг мазерных линий обусловлен тем, что при расширении светящейся оболочки звезды её часть, обращённая к наблюдателю, приближается к нам, а часть, расположенная позади звезды, удаляется от наблюдателя. Величина сдвига излучаемых частот изменяется с тем же периодом, что и яркость видимого свечения звезды. Расчёты показывают, что для короткопериодических гигантов типа Мирры Кита скорости расширения атмосфер, содержащих гидроксильные мазеры, достигают 10 км/с, а для сверхгигантов даже 40 км/с.
Предположение о том, что допплеровский сдвиг вызван вращением звёзд, отпадает потому, что скорость вращения таких гигантов не может изменяться со столь малыми периодами, как сотни дней.
Звёздные мазеры позволили уточнить наши знания о красных гигантах. Диаметр самой звезды в несколько сот раз превышает диаметр Солнца, а окружающая газопылевая атмосфера в 15 раз превышает размеры Солнечной системы. Давление излучения, исходящего от звезды, ускоряет газ и пыль. Процесс идёт сначала медленно, затем быстрее, а во внешних областях опять медленно. Давление излучения, а следовательно, и скорости молекул и пылинок периодически изменяются вместе с яркостью свечения звезды. При этом в атмосфере пробегают расширяющиеся ударные волны. Таким образом, в красных гигантах происходят бурные процессы, по интенсивности уступающие только процессам в новых и сверхновых звёздах.
О межзвёздных мазерах, возникающих в газово-пылевых облаках, известно меньше. Однако данные наблюдений с определённостью указывают на то, что в облаках, обладающих мазерным излучением, вероятно, скрываются слабо нагретые протозвёзды, находящиеся на первых этапах звёздной эволюции. Это подтверждается как тем, что в этих облаках не видно горячих звёзд, так и тем, что в этих облаках ещё не удалось наблюдать межзвёздных мазеров на моноокиси кремния, для существования которых необходимы температуры порядка 1000 К.
В этой книге рассказано лишь несколько историй, они разные, в них разные действующие лица, разные области физики, но всё это истории о том, как учёные пытаются ответить на вечные вопросы. Познаваем ли мир? Может ли разум понять устройство природы? Можно ли предчувствовать истину? И что есть истина?
Прочитав книгу, читатель вправе продолжить перечень вопросов, а задумавшись над ними, попытаться ответить на некоторые из них по-своему. Ведь не все же найденные ответы правильные, не все решения единственные, не все варианты ответов перебраны.