Путешествие к далеким мирам
Шрифт:
Казалось бы, что даже такая огромная скорость не в состоянии решить задачу межзвездного полета, так как расстояния в подобных путешествиях составляют многие десятки, тысячи, миллионы световых лет. Но, по развитой новейшей физикой теории быстрых движений (обычно эту теорию называют частной или специальной теорией относительности), время, это четвертое измерение, меняет темп своего бега, когда скорость движения становится очень близкой к скорости света. На корабле, мчащемся с подобной скоростью, часы будут тянуться очень медленно. Так, например, если корабль мчится со скоростью всего на 1 процент меньше скорости света к звезде 61 Лебедя, у которой, как говорилось выше, советские астрономы обнаружили планетарного спутника, то для обитателей Земли с момента вылета корабля до момента его возвращения
Такое замедление времени при движении с околосветовой скоростью — уже не только предположение. Современная наука знает экспериментальные факты, которые могут быть объяснены только с помощью этой теории быстрых движений.
Если скорость корабля будет еще гораздо ближе к скорости света, то такой корабль может за короткое время совершать экскурсии даже в отдаленные от Солнца уголки Вселенной. Так, например, до ближайшей к нашей Галактике спиральной туманности, находящейся в созвездии Андромеды и отстоящей от нас на расстоянии более миллиона световых лет, этот корабль долетит всего за несколько «растянутых» часов.
Правда, даже при такой скорости межзвездных кораблей продолжительность полета будет гораздо больше указанной, так как постепенный, медленный разгон корабля, а потом такое же торможение потребуют большого времени. Можно полагать, что разгон и торможение корабля будут происходить с ускорением, близким к ускорению земного тяготения, как наиболее «комфортным» для длительного полета. И все же эти околосветовые скорости открывают необычайные возможности межзвездного полета.
Так, если представить себе такой полет, при котором первую половину пути корабль летит с постоянно возрастающей скоростью при ускорении, равном ускорению земного тяготения, а затем вторую половину пути с таким же ускорением тормозится, то за срок в половину своей жизни, то есть за 30–40 лет, межзвездные путешественники смогут добраться и совершить благополучную посадку на небесном теле, удаленном от нас на расстояние в миллиард световых лет! Это значит, что за время путешествия и на Земле пройдет миллиард лет… Так наука открывает принципиальную возможность «управления» временем (правда, в одном, все том же направлении) и сокращения колоссальных расстояний.
Но для этого требуется «немногое» — полет с околосветовой скоростью. А это связано с поистине неимоверными трудностями, столь большими, что открывшиеся возможности межзвездного полета оказываются, при ближайшем рассмотрении, призрачными, воспользоваться ими практически, вероятно, не удастся.
И не потому, что наука не знает двигателя, способного разогнать корабль до нужной невиданной скорости. Такой двигатель, единственный в своем роде, известен — это фотонная ракета (подробнее о ней рассказано в главе 18). Фотонный двигатель создает реактивную тягу в результате истечения из него не вещества, а квантов энергии, фотонов. Правда, для создания фотонного двигателя потребуется совершить решающий скачок вперед в искусстве использовать сокровенные запасы энергии атомных ядер. Понадобится решение и других задач феноменальной сложности, к которым пока еще даже неизвестно как и подойти. Но фотонная ракета будет создана, это дело лишь времени.
Однако и после этого главная трудность осуществления подобных межзвездных полетов будет все еще впереди — она заключается в поистине невероятных количествах энергии, которые для этого потребуются. Так, для осуществления упомянутого выше полета с непрерывным разгоном, а затем таким же непрерывным торможением в течение примерно 40 лет понадобится превратить в энергию вытекающих фотонов в фотонном двигателе корабля, даже если его вес ничтожно мал и равен всего 10 тоннам, вещество общим весом… 10 миллиардов тонн! Этой энергии хватило бы для расплавления всей оболочки земного шара на глубину в сотни километров.
Какое разочарование!.. Открывшиеся на миг ворота к звездам безжалостно захлопнулись. По-прежнему путь к мыслящим существам на других планетах кажется достижимым ценой жизни многих поколений звездоплавателей, которые не увидят ничего, кроме тесных стен корабля. Ну что ж, если этот путь единственный, то и он, конечно, будет использован.
Но единственный ли все же это путь? Разве не казалось так во многих других случаях, когда человеческий гений находил решение неразрешимых на первый взгляд задач? Не считалось ли совсем еще недавно, что цепи земного тяготения нерасторжимы?
Почему, в частности, все запасы «фотонного» топлива должны находиться на самом межзвездном корабле? Ведь как ни «пусто» межзвездное пространство, в нем плавают отдельные частицы вещества. [85] Разве не может «питаться» ими прожорливая фотонная ракета? При колоссальной, околосветовой скорости движения корабля он будет встречать каждое мгновение не так уже мало этих частиц. Огромный, площадью в сотни квадратных метров, заборник фотонного двигателя будет заглатывать все встречные частицы вещества, а затем этот своеобразный фотонно-прямоточный двигатель «переварит» их в фотоны для излучения с целью создания движущей силы. Однако даже в такой гигантский заборник двигателя за каждую секунду движения корабля попало бы всего несколько миллиграммов межзвездного вещества (так оно разрежено), если бы не все те же эффекты теории относительности — в действительности это количество будет неизмеримо большим. А ведь существуют в мировом пространстве и колоссальные газопылевые туманности и могучие реки космического излучения, где плотность материи значительно выше.
85
Установлено, что, помимо разреженной космической пыли, в межзвездном пространстве плавают атомы водорода, гелия, кальция, натрия, титана, а также другие атомы и даже молекулы.
Правда, встреча, точнее — столкновение, корабля с частицами вещества при такой скорости опаснее самого вредного радиоактивного излучения, защита от него потребует экранов толщиной в десятки сантиметров. Что же говорить о столкновении с метеорным телом, в результате которого корабль попросту мгновенно испарится?
На пути осуществления межзвездного полета встанут и другие, еще, может быть, даже неизвестные трудности, однако мы ни на минуту не сомневаемся, что люди сумеют протянуть руку своим сотоварищам из далеких миров…
Но возвратимся к более реальным перспективам астронавтики — тем задачам, которые ей предстоит решать в течение ближайших десятилетий, — к полету на планеты нашей солнечной системы.
При полетах на планеты, в отличие от полета на Луну, межпланетный корабль должен передвигаться на значительные расстояния в поле солнечного тяготения, так как он при этом сильно удаляется от Солнца или приближается к нему. В этом случае притяжением к Солнцу уже нельзя пренебрегать. На преодоление солнечного тяготения приходится затрачивать значительную энергию, и это может сильно усложнить полет на планеты по сравнению с полетом на Луну. Но главная трудность такого полета — его большая продолжительность, если речь идет о полете с людьми. Только постепенно, осторожно — по мере изучения всех особенностей полета в мировом пространстве и, пожалуй, главным образом его влияния на человека — подобные полеты смогут становиться все более дальними, и межпланетные корабли будут забираться все дальше в глубь околосолнечного пространства.
Наложение полей тяготения Земли и планеты, к которой совершается полет, практически отсутствует, и с ним можно не считаться. Эти поля не простираются на такие большие расстояния. Можно считать, что притяжение к Земле исчезает на расстояниях от нее, превышающих 800 тысяч — 1 миллион километров, так оно там мало. Гиря, которая весит на Земле 1 килограмм, весила бы на таком расстоянии от Земли около 0,05 грамма, то есть примерно в 20 тысяч раз меньше.
Полет на какую-нибудь планету состоит поэтому как бы из трех различных участков: а) сравнительно небольшого участка полета в поле тяготения Земли; б) обычно тоже небольшого участка полета в поле тяготения планеты и в) разделяющего их, основного по протяженности, участка, где сказывается только сила притяжения к Солнцу.