Путешествие к далеким мирам
Шрифт:
И в межпланетном полете едва ли не самый неприятный момент — посадка, хотя и по другим причинам, чем в авиации. Впрочем, взлет межпланетного корабля тоже по-своему неприятен. Вероятно, немало раз учлетам Школы командиров межпланетных кораблей придется совершать взлеты-посадки с инструктором, пока они получат право на самостоятельный вылет.
Взлет межпланетного корабля… Какая захватывающая картина! Сколько раз человеческая мысль рисовала себе эти волнующие мгновения расставания с родной Землей для гигантского прыжка к далеким мирам! Впрочем, гораздо проще представить себе напряжение последних минут перед стартом корабля, трогательные прощальные приветствия и последние просьбы, вроде передачи приветов общим марсианским знакомым, чем продумать все необходимое для обеспечения удачного старта.
А подумать придется о многом. Здесь и время взлета, и его направление, и скорость, и «программа» дальнейшего полета в земной атмосфере, и расход топлива на взлет, и самочувствие пассажиров, и многое
Наиболее просто решается вопрос о месте взлета межпланетного корабля. К счастью, космопорт может быть расположен почти в любой точке земного шара, так что будущие межпланетные путешественники не должны будут обязательно отправляться к экватору, как это некоторые предлагают. Конечно, расположение точки взлета на экваторе представляет некоторое преимущество в том отношении, что при этом наиболее полно используется скорость вращения Земли вокруг своей оси. При взлете с экватора корабль получает дополнительную скорость — 465 метров в секунду. Чем больше географическая широта точки взлета, то есть чем ближе она к полюсам, тем меньше этот выигрыш, становящийся равным нулю при взлете с полюса. При расположении космопорта в средних широтах — скажем, в районе Москвы — прирост скорости составит примерно 260 метров в секунду. В погоне за остальными 200 метрами вряд ли будет иметь смысл отправляться за тропики, хотя, конечно, взлет с какой-нибудь высокогорной площадки, расположенной на Кавказе или Памире, был бы выгодным во многих отношениях.
Время отлета корабля не должно быть обязательно определено с точностью до секунд, и даже долей секунд, как это иногда пишут, так что и с этим дело обстоит сравнительно просто. Во всяком случае, не будет такой угрозы, что пропущенная для взлета секунда заставит перенести его на следующий день или даже на следующий год. Вместе с тем, конечно, полной свободы выбора в этом отношении тоже не будет. В частности, как уже указывалось в главе 15, полеты по направлению к Солнцу должны начинаться днем, а от Солнца — ночью, причем наивыгоднейшее время будет зависеть от географических координат, времени года, цели и проч.
Гораздо серьезнее вопрос о направлении взлета корабля, подвергнутый тщательному изучению еще Циолковским. Здесь приходится считаться с двумя противоречивыми требованиями. С одной стороны, продолжительность полета в земной атмосфере хотелось бы сделать минимальной, так как это уменьшило бы потери скорости из-за сопротивления воздуха. Для этого целесообразно пересекать атмосферу по кратчайшему пути, то есть осуществлять взлет вертикально. Но, с другой стороны, вертикальный взлет приводит к новым потерям в скорости корабля — под действием силы тяжести (так называемые гравитационные потери). Если корабль взлетает вертикально, то влияние силы притяжения к Земле уменьшает конечную скорость корабля, которую он приобретает в результате работы двигателя. Чем больше время такого подъема и меньше допустимые в полете ускорения, тем сильнее сказывается это тормозящее действие силы тяжести. Ведь если бы ускорение, сообщаемое двигателем кораблю, только равнялось ускорению силы тяжести, то корабль просто повис бы в воздухе, не набирая высоты. Это обстоятельство делает целесообразным горизонтальный взлет, при котором сила тяжести не уменьшает скорости корабля. А это значит, что нет необходимости и увеличивать потребный запас топлива.
Какое же направление все-таки избрать: вертикальное, горизонтальное или наклонное?
Вообще говоря, в каждом конкретном случае можно было бы избрать наивыгоднейший угол наклона линии взлета в зависимости от допустимых в полете ускорений, лобового сопротивления корабля и других факторов. Именно так обычно и рисуют взлет межпланетного корабля — по длинной взлетной дорожке, уходящей на эстакаде высоко в небо. Однако, вероятнее всего, взлет межпланетного корабля будет осуществляться все же не так. Он будет скорее напоминать запуск тяжелых дальних ракет, описанных в главе 6, да и всех других высотных и космических ракет — ведь теперь уже накоплен немалый опыт в этом отношении.
Для взлета корабль будет, вероятно, установлен в вертикальном положении на свои собственные опоры — шасси, снабженные мощными амортизаторами, типа самолетных. Вертикальное положение корабля целесообразнее с точки зрения его прочности. Вдоль оси корабля при взлете или посадке действуют силы, в несколько раз превышающие его собственный вес, так что корабль рассчитан на эти продольные нагрузки. В боковом же направлений и прочность и жесткость корабля, имеющего легкую оболочку, явно недостаточны, он не рассчитан на большие поперечные нагрузки, и потому горизонтальное положение корабля, вероятнее всего, будет нежелательным. К слову сказать, и посадка корабля на планетах, в особенности лишенных атмосферы, будет заведомо производиться тоже в вертикальном направлении, на такое же опорное шасси.
Взлетать корабль будет вертикально и, поднимаясь так же вертикально, прямо в небо, начнет набирать высоту, чтобы как можно скорее пересечь наиболее плотные слои атмосферы, оказывающие наибольшее сопротивление полету. На высоте между 10 и 20 километрами приборы управления полетом корабля отклонят направление полета от вертикального. Корабль начнет полет по криволинейной траектории на восток.
Кстати, об управлении кораблем в полете. Этому вопросу, естественно, уделено много внимания во всех работах по астронавтике, начиная с Циолковского, ибо межпланетный корабль должен быть свободно управляемым в любой момент своего полета. Циолковский не только впервые сформулировал проблему управления межпланетным кораблем, но и предложил решения этой проблемы, к которым в дальнейшем не было добавлено ничего принципиально нового. Некоторые из этих предложений Циолковского уже получили широкое применение в реактивной технике — в частности для дальних управляемых в полете ракет. [111] Для управления при полете в атмосфере корабль будет снабжен, очевидно, воздушными, аэродинамическими рулями, вроде применяемых на самолетах. Однако такие рули не могут, конечно, ничем помочь при полете в безвоздушном пространстве. Мало того: даже при полете в атмосфере они иногда не справляются с задачей. Так бывает, например, в начале взлета, когда скорость корабля еще недостаточна для того, чтобы рули были эффективными, а также при полете в верхних, разреженных слоях атмосферы.
111
Циолковскому же принадлежит и самая идея автоматического управления полетом ракеты. Им же изобретен и автопилот, получивший в настоящее время широкое применение в авиации.
Поэтому корабль будет снабжен наряду с воздушными еще и газовыми рулями, то есть рулями, расположенными в струе газов, вытекающих из двигателя. Поворот газовых рулей отклоняет реактивную струю, создавая боковое усилие, которое изменяет направление полета корабля. В некоторых случаях для этой же цели двигатель устанавливают на ракете так, что он сам может несколько поворачиваться, изменяя направление силы тяги. Этот метод управления принят для ракеты «Авангард» в США. Двигатель первой ступени этой ракеты установлен на шаровом шарнире, как это и предлагал Циолковский, и может поворачиваться примерно на 4–5° в каждую сторону от осевого направления.
Для управления кораблем, летящим в мировом пространстве, такие методы, однако, непригодны, так как включать главный двигатель корабля специально для целей управления не всегда будет целесообразно, а иногда и просто невозможно. Управление в мировом пространстве должно основываться на других принципах. Для этой цели можно, например, установить вспомогательные рулевые жидкостные ракетные двигатели. [112] Можно также использовать то обстоятельство, что летящий корабль не может быть без помощи внешних сил повернут вокруг своего центра тяжести. [113] Если внутри корабля вращать какую-нибудь массу в одну сторону, то корабль сам начнет вращаться в другую. Следовательно, для целей управления можно установить внутри корабля быстро вращающийся диск. С его помощью можно поворачивать корабль в нужном направлении.
112
При этом надо помнить, что раз вызванное этими двигателями вращение корабля будет продолжаться, пока его не прекратит толчок в обратном направлении.
113
Так называемый закон сохранения момента количества движения.
Конечно, так можно повернуть корабль только вокруг его центра тяжести. Для изменения направления полета корабля без двигателя не обойтись.
Но вернемся к нашему взлетающему кораблю. Криволинейный полет корабля с работающим двигателем будет продолжаться со все возрастающей скоростью, переходя постепенно почти в горизонтальный. На высоте около 100 километров корабль будет лететь уже под небольшим углом к горизонту, почти горизонтально. Такой облет Земли будет длиться до тех пор, пока скорость корабля станет круговой (около 7,9 километра в секунду). Как только его скорость станет больше круговой, корабль начнет удаляться от Земли.