Чтение онлайн

на главную - закладки

Жанры

Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:

Пространство положений и импульсов называют фазовым пространством. Можно сказать, что частица описывает определенную траекторию в фазовом пространстве: как положение, так и импульс меняются во времени, следуя правилам, заданным уравнениями Гамильтона. Мы можем представить траекторию в фазовом пространстве точно так же, как мы это делаем в обычной жизни: нужно только помнить, что часть этих положений на самом деле представляют собой скорость частицы.

Теперь мы можем рассмотреть проблему многих частиц. Мы знаем, что для того, чтобы определить частицу в фазовом пространстве, нам нужно шесть чисел.

Сколько чисел потребуется для двух частиц? Шесть для первой и шесть для второй, то есть 12. Итак, систему из двух частиц можно рассматривать так, будто речь идет об одной частице, движущейся в 12-мерном пространстве. Поскольку уравнения

Гамильтона работают для любого числа измерений, мы должны будем всего лишь решить большее число уравнений, и в этом преимущество его математической разработки.

Из предыдущих рассуждений можно сделать вывод, что каждый раз, когда мы будем добавлять частицу, нам потребуются еще шесть чисел: три для ее положения и три для ее импульса. Следовательно, для системы из N частиц число координат, которые нам понадобятся, равно 6N. То есть система из N частиц соответствует одной частице, движущейся по пространству из 6N измерений. Хотя в это и не верится, но решить задачу с частицей, движущейся по пространству из 6N измерений, легче, чем задачу с шестью измерениями для каждой частицы.

Положение частицы на фазовой диаграмме можно представить как группу чисел, разделенных запятыми:

r = (q1, q2, q3, p1, p2, p3)

где q обозначает положения, р — импульсы. Чтобы представить две частицы, нам нужно всего лишь удвоить число координат следующим образом:

r = (q1, q2, q3, q4, q5, q6,p1, p2, p3, p4, p5, p6)

где первые три положения соответствуют первой частице, а три следующие — второй; то же самое касается импульсов.

В целом для N частиц положение в фазовом пространстве задано рядом чисел, в котором количество каждой координаты в три раза больше, чем число частиц:

r = (q1, q2, q3… q3N, p1, p2, p3p3N )

Этот набор чисел, разделенных запятой, говорит нам о положении точки в фазовом пространстве, поскольку это аналог точки в трех измерениях, но распространенный на произвольное число измерений. С течением времени частица меняет положение в фазовом пространстве, следуя траектории, которую мы можем вычислить, пользуясь уравнениями Гамильтона.

Траектории в фазовом пространстве

Описать траекторию частицы в фазовом пространстве — сложная задача, поскольку невозможно представить столько измерений одновременно. Но иногда мы можем ограничиться некоторыми измерениями, например горизонтальным положением и импульсом в этом же направлении.

Самый простой случай — это случай частицы, движущейся в одном измерении, то есть вдоль прямой линии. Несмотря на это ограничение, частица может перемещаться самыми разными способами: она может колебаться вперед и назад или осуществлять ускоренное движение в одном направлении.

Каждому случаю будет соответствовать своя траектория в фазовом пространстве. Изучение этих траекторий позже поможет нам понять некоторые свойства систем с большим количеством частиц, в частности газов.

Рассмотрим случай, когда частица движется по прямой с постоянной скоростью. Поскольку скорость постоянна, а импульс — это произведение массы на скорость,

импульс также будет постоянным. Итак, частица будет двигаться вдоль горизонтальной оси х, сохраняя один и тот же импульс. Рисуя ее траекторию, представим себе, что частица движется, оставляя после себя след, как от сверхзвукового самолета (см. рисунок на следующей странице). След — это то, что представлено на графике: области, по которым прошла частица.

Траектория в фазовом пространстве частицы, которая движется прямолинейно на постоянной скорости, имеет следующий вид.

На графике показано, что импульс частицы при любом ее положении один и тот же. Подобным образом движется, например, поезд, который всегда едет на одной и той же скорости.

Более интересен случай, когда частица движется зигзагом, например как игрушка, прикрепленная к пружине и подпрыгивающая вверх-вниз. В этом случае скорость игрушки уменьшается, пока она не доходит до одного края, затем она начинает увеличиваться по мере того, как игрушка доходит до центра движения, и затем снова уменьшается, когда она доходит до противоположного края. Форма такого движения в фазовом пространстве довольно любопытна.

Как можно заметить, траектория имеет форму эллипса, то есть типичную форму колебательного движения, хотя возможны и более сложные случаи. Эта траектория соответствует некоторым начальным положению и скорости, то есть начальным условиям. С каждым набором начальных условий связана разная траектория в фазовом пространстве. На первом графике на стр. 46 показаны возможные траектории для частицы, движущейся зигзагом, в зависимости от ее начального положения.

* * *

РАЗЛИЧНЫЕ ТРАЕКТОРИИ В ФАЗОВОМ ПРОСТРАНСТВЕ

Существует огромное количество возможных траекторий в фазовом пространстве, и их форма зависит от правил, регулирующих развитие системы. Например, на графике показана траектория в фазовом пространстве частицы, которая колеблется под воздействием силы трения, так что постепенно теряет энергию.

Но возможно и намного менее предсказуемое поведение. Рисунок ниже соответствует аттрактору Лоренца — траектории, возникающей при описании погоды. В целом существует столько возможных траекторий, сколько можно вообразить систем. Некоторые из них упорядочены, но существует и огромное количество систем, в которых траектория частицы непредсказуема. Трехмерная траектория абсолютно непредсказуема и никогда не проходит через одну и ту же точку.

* * *

Различные траектории в фазовом пространстве.

Каждая траектория соответствует различной энергии.

В случае с газами мы хотим изучить не одну траекторию системы, а все возможные траектории; поскольку начальные условия нам неизвестны, следовательно, мы должны предположить, что они находятся в определенном диапазоне. Метод Гамильтона позволяет нам вывести некоторые свойства без необходимости останавливаться на каком-то из них конкретно. Одно из этих свойств, которое приобретет чрезвычайную важность при изучении газов, заключается в том, что траектории в фазовом пространстве никогда не пересекаются: невозможно прийти в одно и то же место, исходя из различных начальных условий, если только оба начальных условия не порождают один и тот же тип движения.

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный