Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Есть и еще одна важная тонкость. В квантовой механике известно два типа частиц: бозоны и фермионы, которые отличаются типом вращения вокруг своей оси. Оказывается, что эти частицы имеют совершенно разные статистические свойства: два бозона могут быть одновременно в одном и том же состоянии, в то время как два фермиона — нет. Из-за этого макроскопическое поведение субстанций, образованных бозонами либо фермионами, абсолютно различно.
Когда мы говорим, что два бозона могут находиться в одном и том же состоянии, мы имеем в виду, что, например, у нас может быть два фотона в одном и том же месте с одинаковой энергией. Это справедливо не только для фотонов, но и для твердых объектов. Примером этого является гелий-4 — атом гелия
В газе комнатной температуры тот факт, что два бозона могут быть в одном и том же состоянии, не имеет значения: при высоких температурах и низких концентрациях существует большой диапазон доступной энергии и положений, так что очень редко две частицы газа находятся в одном и том же состоянии. Однако по мере увеличения плотности газа его частицы располагаются все ближе друг к другу, но пока не соприкасаются. Если температура очень низкая, молекулы также имеют довольно небольшую энергию, и это означает, что число доступных энергий также очень невелико. Именно здесь вступает в игру статистика Бозе — Эйнштейна.
Согласно статистике Бозе — Эйнштейна, два бозона могут быть в одном и том же состоянии. То есть если сильно охлаждать газ и одновременно сжимать его, наступит момент, когда молекулы газа окажутся очень близко друг к другу и будут иметь очень маленький диапазон доступной энергии. Это приведет к тому, что некоторые молекулы войдут в одно и то же состояние, то есть будут иметь одно и то же положение и энергию. Если мы достаточно охладим газ, мы сможем добиться того, что это сделают все молекулы, то есть все вещество газа будет вести себя как одна-единственная молекула, и это состояние материи отличается от газообразного, твердого или жидкого. Оно называется конденсатом Бозе — Эйнштейна. За последние десятилетия конденсат перестал быть теоретическим курьезом и может быть создан в лабораторных условиях.
На следующем графике показана вероятность нахождения бозона с некоторой энергией для низких температур в сравнении с той же вероятностью по распределению Максвелла — Больцмана. При высоких температурах оба распределения совпадают.
Число частиц на энергетический уровень для распределений Бозе — Эйнштейна (темно-серый) и Максвелла — Больцмана (светло-серый). Пунктиром показана статистика Ферми — Дирака.
Если же частицы, образующие газ, являются фермионами, их поведение при высокой плотности и низких температурах сильно отличается. Фермионы следуют другому типу статистики, называемой статистикой Ферми — Дирака. В этом случае два фермиона не могут быть в одном и том же состоянии. Пример фермиона — электрон, частица с отрицательным зарядом, которая вращается вокруг атомного ядра. Согласно статистике Ферми — Дирака, у двух электронов, вращающихся вокруг ядра, должны быть различные состояния, поэтому на каждый энергетический уровень может быть только два электрона: при одной и той же энергии у них будет разное внутреннее вращение. В результате не все электроны могут располагаться на орбите, ближайшей к атомному ядру, что, в свою очередь, порождает химические свойства вещества. То есть химия — это прямое следствие из статистики Ферми — Дирака.
Пример, в котором статистика Ферми — Дирака получает огромное значение, — это случай белого карлика. Белый карлик — остаток такой звезды, как Солнце, которая, избавившись от внешних слоев, остается с чрезвычайно плотным ядром. Ядро сжимается из-за гравитации, создавая огромное давление. При сжатии ядра электронные оболочки атомов разрушаются, и вещество ядра превращается в электронно-ядерную плазму. Однако при
* * *
КОНДЕНСАТЫ БОЗЕ — ЭЙНШТЕЙНА, СВЕРХТЕКУЧЕСТЬ И СВЕРХПРОВОДИМОСТЬ
Некоторые конденсаты Бозе — Эйнштейна, если их достаточно охладить, ведут себя как сверхтекучие жидкости. Сверхтекучая жидкость — это жидкость с нулевой вязкостью: она никак не сопротивляется изменению формы, и из-за этого ее поведение очень отличается от поведения обычной жидкости. Например, если поместить сверхтекучую жидкость в сосуд, она будет стремиться выйти из него и собраться на земле, где потенциальная энергия меньше.
Наглядное представление способности жидкого гелия выходить за пределы тел, с которыми он контактирует.
Хотя электроны являются фермионами, а не бозонами, электроны некоторых металлов могут соединяться в пары, так называемые пары Купера, которые ведут себя как бозоны. При низких температурах эти пары создают сверхтекучую жидкость электронов, и это означает, что подобный материал может проводить электричество без какого-либо сопротивления. Такое свойство называется сверхпроводимостью и имеет большое технологическое применение: с ним, например, связана возможность поддерживать в воздухе магнитопланы или конструировать мощные магниты Большого адронного коллайдера — ускорителя частиц, построенного в ЦЕРНе.
* * *
Хотя статистики Ферми — Дирака и Бозе — Эйнштейна были разработаны для работы с физическими явлениями, их применение (впрочем, это справедливо для любого хорошего математического инструмента) вышло далеко за пределы физики. Например, статистика Бозе — Эйнштейна используется при изучении комплексных сетей.
Комплексную сеть можно рассматривать как ряд узлов, связанных между собой некоторыми законами, регулирующими появление и связь новых узлов. Существует большое количество систем, которые можно смоделировать как комплексные сети, например группа друзей какого-то человека: каждый индивид связан со своими друзьями, которые, в свою очередь, связаны с другими, и эти связи образуют развитую сеть. Любопытный результат теории комплексных сетей состоит в том, что у человека обычно меньше друзей, чем у его друзей в среднем. Это можно объяснить тем, что некоторые узлы сети стремятся сконцентрировать на себе множество связей, и, следовательно, вероятность быть связанным с таким узлом выше, чем с узлом с небольшим количеством связей.
Это справедливо и для числа людей, с которыми у человека были в течение жизни любовные отношения: теория комплексных сетей утверждает, что в среднем у партнера таких отношений было больше. Это связано с тем, что гораздо вероятнее образовать пару с человеком, у кого было много других партнеров, чем с тем, у кого их было очень мало.
Теорию сетей можно использовать и для моделирования мозга, при этом нейроны рассматриваются как узлы, а также для того, чтобы математически представить связи между людьми в социальных сетях или объяснить число ссылок между сайтами. Другое важное применение, возникшее совсем недавно, заключалось в анализе концентрации богатства: Джеймс Глаттфельдер (1972) провел исследование, в котором пытался выяснить, кому принадлежит большинство предприятий планеты.