Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Следовательно, автокаталитическая система — это группа молекул, которые катализируют производство самих себя и которые способны превращаться друг в друга. Автокаталитические системы характеризуются регулярным поведением, которое довольно сложно объяснить прямым действием законов Больцмана.
Возьмем, например, химические часы. Сегодня известно несколько пригодных для этого реакций, и все они имеют нечто общее: в часах используется раствор нескольких веществ, два из которых могут превращаться друг в друга с помощью третьего компонента. При реакции Белоусова — Жаботинского превращение веществ сопровождается окрашиванием раствора в разные цвета, так что реакцию можно наблюдать невооруженным глазом.
При определенных концентрациях раствора
Другое свойство автокаталитических систем состоит в их способности к самовоспроизведению. Конечно, это касается не каждой отдельной молекулы, а именно их совокупности. Этим же признаком обладают и все живые существа: ни одна молекула в их телах не способна к самовоспроизведению сама по себе, но различного рода совместная работа позволяет в итоге восстановить целостность системы.
Американский биолог Стюарт Алан Кауффман (1939), изучавший автокаталитические системы, выяснил, что их свойства связаны с эволюцией. На основе чисто математического подхода, не учитывая химических свойств системы, он обнаружил, что системы можно разделить на части, которые взаимодействуют между собой и могут эволюционировать, создавая между частями все более сложные отношения с растущим количеством элементов. Ученый ничего не говорит о природе этих частей, и его анализ применим не только к химическим веществам, но и к любому набору систем, взаимодействующих подобным образом. Так, Кауффман утверждает, что примером автокаталитической системы является бактериальная флора нашего кишечника.
Видение жизни как самоорганизующейся системы совпадает с идеей о том, что живые существа являются диссипативными системами. Живое существо — это структура, которая поддерживает свою энтропию постоянной, создавая энтропию вокруг себя, что означает, что такое существо должно потреблять энергию и как можно эффективнее рассеивать ее. Живые существа представляют собой систему в метастабильном состоянии: несмотря на то что они находятся вне равновесия, они способны поддерживать это состояние, пока система не сталкивается со слишком большими нарушениями, и в этом случае живое существо переходит в состояние стабильного равновесия, то есть смерти. Исследования Кауффмана подчеркнули возрастающую сложность автокаталитических процессов, которую можно объяснить тем фактом, что диссипативные системы стремятся к внутреннему упорядочению, выводя хаос за пределы системы.
Самоорганизующиеся системы могут включать как живые существа, так и инертные части. Пример этого — поведение колонии муравьев или термитов. Как объясняет Пригожин в своей книге «Порядок из хаоса», термиты при строительстве термитника ведут себя так же, как молекулы в химической диссипативной системе.
Он пишет:
«Первая стадия строительной активности (закладка основания), как показал Грассе, является результатом внешне беспорядочного поведения термитов. На этой стадии они приносят и беспорядочно разбрасывают комочки земли, но каждый комочек пропитывают гормоном, привлекающим других термитов.
[…] Начальной «флуктуацией» является несколько большая концентрация комочков земли, которая рано или поздно возникнет в какой-то точке области обитания термитов. Возросшая плотность термитов в окрестности этой точки, привлеченных несколько большей концентрацией гормона, приводит к нарастанию флуктуации. Поскольку число термитов в окрестности точки увеличивается, постольку вероятность сбрасывания ими комочков земли в этой окрестности возрастает, что, в свою очередь, приводит к увеличению концентрации гормона-аттрактанта. Так воздвигаются
Как видно, описание соответствует развитию динамической системы, которая переходит от гомогенного состояния в негомогенное, в котором исходные нестабильности приобретают все большее значение и в конце концов полностью определяют развитие системы. Имеется и другой случай спонтанного нарушения симметрии: начальная территория одинакова везде, но в результате деятельности термитов случайно выбираются те ее части, которые скрывают начальную симметрию состояния.
Другой пример самоорганизующейся системы представляют собой коллективные амебы, одноклеточные животные, образующие сложные структуры при недостатке пищи. Амебы ведут себя как автономные существа, пока им хватает пищи, но как только наблюдается ее недостаток, одна из амеб начинает выделять определенное вещество, запускающее цепную реакцию: остальные амебы движутся к ней, образуя конгломерат, который начинает развиваться. Пригожин пишет:
«Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несущий на конце мириады спор».
Самоорганизующиеся системы не только существуют в природе, но и являются важной частью наших технологических достижений. Один из примеров — нейронные сети, которые используются сегодня в различных сферах, от распознавания голоса до обнаружения лиц на фотографиях.
Нейронная сеть — это компьютерная программа, имитирующая структуру мозга. Она состоит из различных слоев нейронов, которые получают и передают импульсы. Поведение нейронов основано на реальном поведении нейронов мозга, хотя и в упрощенном виде.
Нейронные сети не программируются в привычном смысле этого слова, а обучаются. Алгоритмы глубинного обучения обеспечивают, что каждый из нейронов берет на себя обработку входящей информации, усваивая ее примерно таким же образом, как это происходит в человеческом мозге.
В нашем мозге нейроны связаны друг с другом, образуя слои. Каждый нейрон имеет несколько входных каналов и только один исходящий. Уровень электрического импульса, поступающего со всех входных каналов, определяет, активируется ли нейрон и передаст ли он сигнал. Способность мозга к обработке информации заключается в регулировании силы связей между нейронами и декодировании сигналов, поступающих из внешнего мира.
Нейронные сети работают так же: у каждого нейрона есть несколько входов и один выход; от интенсивности входящего сигнала зависит, активируется ли нейрон. Каждый слой нейронов представляет собой различный когнитивный аспект: так, в нейронных сетях для обработки изображений первый слой используется для обнаружения базовых форм, второй — для более сложных форм, и так далее, пока очередь не дойдет до таких понятий, как «собака» или «мама».
Преимущество обучаемых нейронных сетей состоит в том, что для процесса глубинного обучения не требуется вмешательство человека — достаточно поступающих данных. Компьютер «Уотсон» компании IBM, например, был запрограммирован на поиск в интернете информации, которая позволила ему выиграть в программе “Jeopardy!” и понимать своих людей-собеседников, но этот поиск производился без вмешательства человека. Нейронная сеть с подходящими параметрами может научиться узнавать элементы на основе набора картинок, и человек при этом не должен будет сообщать ей: «Это камень». Недавно Google добился того, чтобы такая нейронная сеть научилась обнаруживать на фотографиях котов. Другое достижение нейронных сетей — программа, способная распознавать капчу — искаженные изображения, которые используются в интернете для проверки, является ли пользователь человеком.