Радиоэлектроника-с компьютером и паяльником
Шрифт:
Диод VD1 будет загораться, когда на его аноде возникнет положительный потенциал относительно катода, и протекающий ток в этом прямом направлении (от p– области к n– области по стрелке УГО, «от плюса к минусу») примет значение достаточное для его свечения (электролюминесценции). При обратном его включении этот прибор будет пробит и испорчен, что надо учесть при пайке реального устройства и подводе к нему питания.
Диод VD2 в данном устройстве практически не работает, если не считать возможности частичной защиты приборов от «переполюсовки» питания. Данный набор имеет некоторую универсальность и возможные расширения функций. В частности, к нему в точках 1 и 7 может
Транзисторы VT1 и VT2 являются биполярными транзисторами n-р-n типа. Они выбираются из панели Transistors, вызываемой нажатием ЛKM на пиктограмму
Рис. 54. Окно редактирования свойств транзистора в EWB
Здесь прибавка к имени транзистора букв ВР означает, что это биполярный транзистор (Bipolar junction Transistor). В меню свойств компонентов можно входить не только двойным щелчком по ним ЛКМ, но и однократным нажатием ПКМ, которое вызовет дополнительное меню (рис. 55).
Рис. 55. Вызов предметной помощи в EWB
В этом меню можно вызвать окно свойств компонента (Component Properties), а также воспользоваться другими стандартными опциями графического редактирования системы Windows для выделенного объекта. Нажмем ЛКМ на позицию Help (помощь) и вызовем предметную справку (рис. 56).
Рис. 56. Окно справки по транзистору в EWB
Здесь (на английском языке) дана короткая справка о типе прибора. УГО, помещенное в левом углу, показывает назначение его выводов: С — Collector (коллектор), В — Base (база), Е — Emitter (эмиттер). Иногда справки содержат и более подробную информацию, например, о микросхемах и использовании устройств в моделях, так что к ним не грех и обращаться за помощью.
Выбор транзисторов, как и любого другого компонента, заканчиваем раздачей именных позиционных меток (в данном случае VT1 и VT2) и необходимым включением в схемную модель (см. рис. 48).
После проведенных подготовительных процедур окончательно проводим соединения всех компонентов как бы внутри печатной платы (проводники здесь моделируют ее дорожки). Всякий компонент в схеме может
Замену какого-либо соединения можно выполнить несколькими способами. Например, курсор подводится к монтажному узлу со стороны того проводника, который надо «пересоединить», нажимается ЛКМ (это как бы включается паяльник), возникает дополнительное утолщение («олово расплавилось»), не отпуская кончик проводника, его перемещают к месту необходимого соединения, и вызвав на нем появление утолщения с нужной стороны («появилась капелька олова»), производят соединение. Если проводник после его «отпайки» отпустить, то он исчезнет.
Удалить проводник, монтажный узел или любой компонент можно и стандартным удалением графического редактирования системы Windows для выделенного объекта, например из окна по рис. 56 или из опций Edit. Правда, при этом могут произойти непредвиденные «пересоединения» в схеме и ее надо будет после этого перепроверить.
После окончательного редактирования схемной модели и проверки ее соответствия принципиальной схеме по соединениям компонентов и их номиналам, можно подключить «внешние устройства». В данном случае их два: источник питания и источник сигнала.
Согласно описанию, устройство имеет батарейное питание. Поэтому выбираем батарею, как было описано ранее (см. рис. 41, 42), и принимаем ее ЭДС Е1 = 12 В.
Увеличение ЭДС с 9 В до 12 В связано с использованием готовых моделей компонентов в программе EWB, особенно светодиода и его чувствительности к сигналам, а также их виду. При более скрупулезном моделировании можно этого избежать. Эти же проблемы возникают и при попытке включить на вход модели фотодиод VD3: обратившись к компонентной базе программы, мы вообще не найдем там подобных устройств. Не надо отчаиваться. Подумаем над тем, какую функцию выполняет фотодиод в реальном устройстве. Фотодиод VD3 включен на обратное напряжение: катод к «+» источника питания через резистор R2 (см. принципиальную схему на рис. 45), а анод к «-» через резистор R1. Если освещение отсутствует или оно «слабое», не сосредоточено на приемной линзе фотодиода, то через него протекает крайне малый обратный (так называемый «темновой») ток, составляющий 1…10 мкА.
В данной схеме можно считать, что неосвещенный фотодиод просто разрывает цепь смещения базы входного транзистора VT1, и потенциал в точке 3 равен 0, а транзистор заперт. Увеличение освещенности приводит к росту числа носителей и величины обратного тока через фотодиод и изменению напряжения на сопротивлении R1. Ток, возникающий в базовой цепи, открывает транзисторы VT1 и VT2, включенные по схеме «пара Дарлингтона». Усиленный этой парой сигнал приводит к загоранию светодиода, включенного в их коллекторную цепь. Поэтому при полуколичественном моделировании заменим неосвещенный фотодиод его «темновым» сопротивлением, приняв последнее R8 = 100 МОм (см. рис. 48), а при освещении равным 0, для чего параллельно входу поставим переключатель, управляемый клавишей S.
Последнее. Подключаем заземление
Если все собрано и работает правильно, то после нажатия на клавишу S (при английской раскладке клавиатуры) стрелки с просветом около VD1 должны «зачерниться»