Чтение онлайн

на главную

Жанры

Рассказы о биоэнергетике
Шрифт:

2) свет вызывает изомеризацию ретиналевого остатка, прикрепленного к белковой части бактериородопсина через альдимин, который протонирован в темноте и депротонирован на свету;

3) процесс генерации потенциала при транспорте

протона складывается из трех стадий (фаз), сильно различающихся по своим скоростям;

4) каждой из этих фаз соответствует определенный спектральный переход, причем фаза II коррелирует с депротонированием альдимина, в то время как фаза III -- с последующим присоединением к нему протона.

Приняв во внимание все эти наблюдения, можно сформулировать

следующую «минимальную» гипотезу.

Свет вызывает такое изменение в окружении протонированного альдимина, что его сродство к протону уменьшается, он отщепляется и затем выделяется в окружающий раствор. После этого окружение альдимина «нормализуется», он переходит в «темновое» положение и вновь приобретает способность связывать протон. Однако теперь уже протон может быть взят только из цитоплазмы бактериальной клетки, но не из внешнего раствора.

Почему же протон, сидящий в темноте на азоте альдимина, выделяется во внешнюю среду, а поглощается из цитоплазмы клетки?

Вероятно, в молекуле бактериородопсина есть два пути, проводящих протоны: один (выходной путь) из глубины мембраны в наружную среду, другой (входной) - из цитоплазмы в глубь мембраны.

В темноте протонированный альдимин находится в конце входного пути. Поглощение светового кванта вызывает изомеризацию ретиналя: остаток ретиналя как бы изламывается, так что прикрепленный к нему на конце атом азота альдимина выходит из контакта с входным путем и перемещается в некое новое положение. Оно в начале выходного пути. Здесь происходит депротонирование альдимина, и выделившийся ион Н+ перемещается наружу.

На следующем этапе происходит обратная изомеризация ретиналя, и альдимин вновь оказывается в конце входного пути, но уже в своей депротонированной форме. Из цитоплазмы по входному пути подтягивается ион Н+ и протонирует альдимин. Цикл завершается.

В рамках этой схемы фаза I фотоэлектрического эффекта есть не что иное, как перемещение протонированного альдимина при изомеризации ретиналя под действием света. Фаза II — перенос протона от альдимина наружу по выходному пути. Фаза III — перенос протона из цитоплазмы к альдимину.

Что требуется для проверки такой гипотезы?

Точное знание, во-первых, местоположения альдимина в темноте и на свету и, во-вторых, устройства входного и выходного путей. Задача это, конечно, сложнейшая, но не безнадежная. Можно даже сказать, что с расшифровкой аминокислотной последовательности и пространственной структуры бактериородопсина наметилась реальная перспектива ее решения. Лишь взяв этот барьер, мы сможем наконец составить чертеж простейшего биологического генератора — бактериородопсина.

Родопсин и зрение

Лаборатория погружена во мрак. Лишь в двух углах большого помещения, заставленного стеллажами с приборами, слабо лучатся красным светом фонари, которые привычнее было бы видеть в комнате фотографа. Привыкнув к темноте, начинаешь различать лица людей, освещаемые зеленоватым мерцающим светом, что струится с экранов осциллографов и дисплеев ЭВМ. Идет опыт на зрительном родопсине.

Да, мы должны были когда-нибудь прийти к этой проблеме. Ведь если столько сил отдано бактериородопсину, то велик соблазн применить ту же аппаратуру к его животному собрату, тем более что с ним связана одна из самых старых и удивительных загадок физиологии.

Животный родопсин был открыт на сто лет раньше бактериального. И тем не менее по сей день мы многого не знаем о его функции. Так не стоит ли сравнить два родопсина, благо функция бактериального белка твердо установлена?

Но что может быть общего у генератора протонного 4 тока в мембране галофильных бактерий и зрительного пурпура в сетчатке глаза?

Два родопсина разделяет дистанция огромного размера. И тем не менее, оказывается, они очень похожи! Вот основные черты этого сходства. Оба белка имеют дело со светом, оба поглощают этот свет ретиналем, привязанным к белку через альдимин. Этот альдимин в обоих случаях протонирован в темноте и депротонируется под действием светового кванта, вызывающего изомеризацию ретиналя. В довершение всего оба — мембранные белки, упакованные таким образом, что два конца полипептидной цепи торчат по разные стороны мембраны. Полипептидные цепи и того и другого родопсинов содержат большое количество спирализованных участков.

Родопсин и зрение

Получается, что животный и бактериальный родопсины прямо-таки близнецы! Как же это увязать с тем, что первый участвует в зрении животных, а другой в энергообеспечении бактерий? Конечно, бывает так, что близнецы выбирают себе разные профессии. Однако это может произойти лишь под давлением чрезвычайных обстоятельств жизни, как утверждают специалисты из центра по исследованию близнецов в Миннесоте. Обычно же близнецы посвящают себя сходным сферам деятельности.

Так, может быть, зрительный родопсин — фотоэлектрический генератор наподобие бактериородопсина?

На первый взгляд такая мысль может показаться странной по одной простой причине: зрительный родопсин, поглотив квант, срабатывает только один раз. В отличие от бактериального родопсина он необратимо обесцвечивается под действием света, теряя остаток ретиналя, который выделяется в воду. Регенерация окрашенного родопсина занимает минуты и потому не может идти ни в какое сравнение с бактериородопсиновым циклом, измеряемым миллисекундами. Ясно, что животный родопсин в противоположность бактериальному не в состоянии генерировать устойчивый ток.

И все же какая-то фотоэлектрическая активность присуща и зрительному родопсину. Еще в 1964 году К. Браун и М. Мураками описали очень быстрый двухфазный сдвиг разности потенциалов на мембране фото-рецепторной клетки сетчатки при включении света. Первая фаза возникала за время короче микросекунды и могла быть связана только с самым первым участником фоторецепторной системы, то есть с родопсином. Вторая фаза развивалась в миллисекундной шкале. Она была направлена противоположно первой фазе. Физиологи не придали большого значения эффекту (он был назван ранним рецепторным потенциалом, сокращенно РРП) вследствие его малой амплитуды: даже при мощном освещении величина потенциала не превышала двух-трех милливольт.

Поделиться:
Популярные книги

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Тринадцатый V

NikL
5. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый V

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5