Самые знаменитые головоломки мира
Шрифт:
Орудуя морским ножом, старый моряк вырезал эти головоломки и тут же продавал их, добывая таким путем себе «немного лишней мелочишки», как он сам это называл. Игра стала широко известна в Лондоне и получила распространение в Европе как английская игра в шестнадцать, но ей не довелось пересечь океан.
В головоломке требуется поменять местами белые и черные штырьки за наименьшее число ходов. Штырек можно перемещать с одной клетки на другую, соседнюю пустую клетку или им можно перепрыгнуть через рядом стоящий штырек (независимо от его цвета), если клетка за ним свободная. Причем штырьки разрешается перемещать только по горизонтали и вертикали (подобно шахматной
По словам очевидцев, старый моряк очень гордился тем, что нашел способ, как можно выполнить задание за наименьшее число ходов. Но либо он ошибался, либо его решение следует считать утраченным. И хотя мир с того времени ушел вперед, решения, которые приводятся в английских сборниках головоломок и математических работах как наикратчайшие, содержат погрешности; во всяком случае, их можно сократить на несколько ходов.
4
Игра в кости, о которой пойдет речь, весьма популярна на ярмарках и карнавалах, но, поскольку игроки редко приходят к согласию относительно своих шансов на выигрыш, я предлагаю ее в форме простой задачи по теории вероятностей.
На прилавке лежат шесть квадратов, помеченных цифрами 1, 2, 3, 4, 5, 6. Игрокам предлагается на любой из квадратов положить любое количество денег. Затем бросаются три кости. Если номер вашего квадрата выпадает только на одной из костей, то вы получаете ваши деньги назад, и к ним прибавляется еще такая же сумма. Если ваш номер выпадает на двух костях, то вы получаете назад ваши деньги плюс сумму, вдвое большую, чем та, которую вы ставили на квадрат. Если же ваш номер выпадает на всех трех костях, то кроме ваших денег вы получаете сумму, втрое превышающую вашу ставку. Разумеется, если номер вашего квадрата не выпадает ни на одной из костей, то все деньги забирает владелец аттракциона.
Поясним это на примере. Допустим, вы поставили 1 доллар на квадрат № 6. Если на одной из костей выпадает 6, то вы получаете назад ваш доллар да еще 1 доллар впридачу. Если 6 выпадает на двух костях, то вы получаете назад ваш доллар плюс еще 2 доллара. Если же 6 выпадает на всех трех костях, то вы забираете назад ваш доллар и получаете еще 3 доллара.
Игрок может рассуждать так: шанс моего числа выпасть на одной кости составляет 1/6, но поскольку костей три, то он повышается до 3/6, то есть до 1/2; значит, эта игра честная. Разумеется, в интересах владельца аттракциона, чтобы так думал каждый.
У кого в этой игре предпочтительнее шансы – у владельца аттракциона или у игрока, и насколько они велики?
5
Эта головоломка ведет свое начало от сказки о золотой подкове. В этой сказке рассказывается о том, как золотую подкову двумя сабельными ударами разрубили на семь частей, в каждой из которых оказалось по дырке для гвоздя, в дырки продели семь ленточек и кусочки подковы повесили на счастье на шеи семерым детям.
После первого разреза получившиеся части разрешается сложить стопкой, а уж затем проводить второй разрез. Но оба разреза должны быть прямыми и бумагу не разрешается ни перегибать, ни даже просто изгибать. Я предложил эту
Решив ее, вы можете испытать свои силы в более трудном случае. Какое наибольшее число частей можно получить с помощью двух разрезов? Условия задачи остаются прежними, только теперь вы можете не обращать внимания на дырки для гвоздей.
6
Во времена колонизации Америки один упорный колонист, который взял на себя тяжкий труд по возделыванию каменистой почвы на одном из островов у побережья Новой Англии, попытался с помощью своей маленькой дочери Марты посадить виноградник. Дабы ободрить девочку, лишенный возможности вознаградить ее иным способом, он разрешил ей возделать свой маленький квадратный участок, содержащий ровно 1/16 акра земли.
Рассказывают, что Марта посадила свои виноградные лозы как обычно, рядами, на расстоянии 9 футов друг от друга, и возделывала их так же, как это делали другие. Но, согласно преданию, ее маленькое и довольно рискованное предприятие увенчалось успехом, и виноградник Марты стал известен в округе. Она собирала с акра больше винограда, чем любой виноградарь этого острова, и вырастила много новых и ценных сортов.
Вот и вся история, если ограничиться лишь голыми фактами. Тем не менее, не ставя под сомнение ни таланты Марты, ни миловидность девочки, которая сообщала лишь дополнительный аромат взращенным ею гроздьям, я хотел бы, так сказать, привить одну практическую задачу к ее винограднику, которая могла бы объяснить причину удивительного успеха.
Сколько виноградных лоз можно посадить на квадратном участке в 1/16 акра так, чтобы лозы отстояли друг от друга не менее чем на 9 футов.
Эта задача удачно подобрана, дабы подвергнуть испытанию изобретательность наших математиков, напомним лишь, что у квадрата площадью в 1 акр сторона равна 208 710/ 1000фута, а значит, сторона квадрата площадью в 1/16 акра составляет 52 фута 2 дюйма. [2] Это несколько отличается от принятых в сельской местности измерений, где квадрат со стороной в 210 футов полагается равным 1 акру.
2
Здесь дается округленное значение. В 1 футе содержится 12 дюймов. – Прим. перев.
7
Просматривая фотографии древних греческих руин, обнаруженных во время недавних раскопок, я обратил внимание на неоднократно повторяющуюся высеченную на камнях эмблему – треугольники в круге. Не вдаваясь в дискуссию относительно интерпретации этого знака, которой сведущие люди посвятили не один том, я просто хочу обратить ваше внимание на математическую или головоломную его особенность.