Самые знаменитые головоломки мира
Шрифт:
– Стандартный канат, – отвечает лавочник, показывая пломбу, гарантирующую длину и качество. – Если у вас не хватает денег, возьмите сколько вам нужно по два цента за фут.
– Отрежьте двадцать футов, – говорит моряк, доставая из кармана золотую монету в пять долларов, чтобы показать, что у него есть чем платить.
Лавочник отмеряет 20 футов, он делает это с таким тщанием, якобы у него и в мыслях нет обмерить покупателя. Моряк замечает, однако, что деревянный ярд, которым пользуется лавочник, на 3 дюйма короче обычного и кончается на отметке 33 дюйма. [3] Подождав, пока канат будет отрезан, моряк холодно указывает на длинный конец и говорит:
3
В 1
– Я беру вот этот кусок в восемьдесят футов. Нет, вам не нужно его посылать, я заберу его сам.
Затем он кидает на прилавок фальшивую монету в 5 долларов, которую лавочник идет менять к соседу. Получив сдачу и ухватив канат под мышку, моряк уходит. Головоломка состоит в том, чтобы выяснить, какой убыток понес на этой операции лавочник, если учесть, что впоследствии сосед потребовал заменить фальшивую монету и что фут каната и в самом деле стоит 2 цента?
13
Описывая, что произошло с ним на торгах, Смит сказал, что за полчаса он спустил половину своих денег и у него осталось столько же центов, сколько было первоначально долларов, и ровно вдвое меньше долларов, чем было первоначально центов. Сколько денег Смит истратил на торгах?
14
Рассказывают, что два честных сирийца, сложив свои сбережения, купили точильный круг. Поскольку они жили в нескольких милях друг от друга, то решили, что сначала кругом будет пользоваться старший из владельцев, а когда круг уменьшится ровно вдвое, он передаст его второму компаньону.
Круг имел в диаметре ровно 22 дюйма, в середине его имелось отверстие для оси диаметром 3 1/7 дюйма, как показано на рисунке. Чему должен равняться диаметр круга, когда его получит второй компаньон?
15
Много лет назад, когда цирк Барнума действительно был «самым захватывающим зрелищем в мире», знаменитый мастер шоу попросил меня приготовить для него в рекламных целях серию призовых головоломок. Они стали широко известны благодаря крупным призам, предлагавшимся каждому, кто сумеет с ними справиться, и получили название загадок Сфинкса.
Барнум был особенно доволен задачей о состязании кошки с собакой. Он широко оповестил всех и вся, что в первый день апреля огласит ответ и раздаст призы или, по его словам, «вынет кота из мешка».
Головоломка формулировалась следующим образом.
Специально обученные собака и кошка участвуют в забеге: 100 футов вперед по прямой и обратно. Собака преодолевает за один прыжок 3 фута, а кошка – только 2; но зато она делает 3 прыжка в то время, как ее соперник делает 2. Скажите, каков при этих обстоятельствах возможный исход состязания?
Того факта, что оглашение ответа назначалось на первое апреля, и намека на «кота в мешке» было достаточно, чтобы заподозрить со стороны великого мастера зрелищных аттракционов какую-то ловушку.
16
Профессор
Никто не отрицает возможность такого исчезновения, но возникают сомнения относительно существования змеи-обруча. Профессор Шафскопфен рыскал по всей стране, пока, наконец, в дебрях Обручевых гор не нашел великолепный экземпляр окаменевшей змеи-обруча, которая так и погибла с кончиком своего хвоста во рту. Пользуясь острой пилой, профессор распилил змею на 10 частей, бережно обложил их ватой, упаковал и с триумфом привез свою добычу домой. Вот тут-то он и потерпел полный крах в попытках сложить части так, чтобы хвост оказался во рту.
Математики утверждают, что из этих десяти частей можно сложить 362 882 различные змеи, ни одна из которых не будет представлять собой замкнутый обруч. Это дало повод скептикам поставить 362 882 против 1 за то, что такая змея никогда и не существовала!
17
Один делец продал велосипед за 50 долларов, затем выкупил его назад за 40 долларов, что, очевидно, принесло ему доход в 10 долларов, поскольку в итоге у него оказался тот же велосипед да еще 10 долларов впридачу. Далее, выкупив велосипед за 40 долларов, он перепродал его за 45 долларов, получив дополнительный доход в 5 долларов, так что общий доход составил 15 долларов.
– Постойте, – сказал бухгалтер. – Но ведь человек начал с велосипеда стоимостью в 50 долларов, а после вторичной продажи у него осталось 55 долларов. Как же он умудрился получить доход, превышающий 5 долларов? Ведь продав велосипед за 50 долларов, он просто совершил обмен, не получив дохода и не понеся убытков. Когда же он купил его за 40, а продал за 45 долларов, то получил при этом доход в 5 долларов. Вот и все.
– А я полагаю, – возразил счетовод, – что когда он продал велосипед за 50 долларов, а выкупил его за 40 долларов, то совершенно ясно, он получил доход в 10 долларов, ибо имел после этого тот же самый велосипед да еще 10 долларов. Но вот когда он вновь продал велосипед за 45 долларов, то просто совершил уже упомянутый ранее обмен, так что на этой операции у него не было ни дохода, ни убытков. Причем последняя операция не затронула первый доход; поэтому в итоге доход человека оказался равным 10 долларам.
Все эти операции крайне просты; относящиеся сюда подсчеты может сделать в уме любой первоклассник. И тем не менее перед нами – три разных ответа! Который из них, по вашему мнению, правильный?
18
Вот практический урок, который заинтересует тех, у кого есть склонность к математике. Водопроводчики и жестянщики считают, что 7 1/2 галлонов равны 1 кубическому футу. Разумеется, математик нам скажет, что в кубическом футе содержится 1728 кубических дюймов, ибо 12 х 12 х 12 = 1728, тогда как в 7 1/2галлонах содержится 173 1/2 кубических дюйма. Но водопроводчики народ покладистый, и они бодро отбрасывают эти 4 1/2 лишних дюйма.