Самые знаменитые головоломки мира
Шрифт:
261. Ответ показан на рисунке.
262. Зная, что на каждой полке содержится ровно 20 кварт, начнем решать задачу, убрав 6 маленьких банок с каждой из двух нижних полок. У нас остаются 2 большие банки на средней полке и 4 средние банки на нижней полке, откуда видно, что 1 большая банка содержит столько же джема, сколько и 2 средние.
Возвратим убранные банки, а затем удалим 2 большие банки со средней полки и их эквиваленты с верхней полки: 1 большую и 2 средние банки. При этом на верхней полке останутся 1 средняя и 3 маленькие банки, а на
Теперь заменим все большие банки парами средних; затем заменим все средние банки тройками маленьких. При этом всего получится 54 маленькие банки. Если 54 маленькие банки содержат 60 кварт, то 1 маленькая банка будет содержать 1 1/9 кварты, средняя банка – 3 1/3 кварты, а большая – 6 2/3 кварты.
263.Кратчайшим для провода будет путь по полу, ближней и дальней стенам зала и по боковой стене. Если мы представим себе комнату в виде картонной коробки, которую можно разрезать и развернуть на плоскость, как показано на рисунке, то кратчайшим путем окажется гипотенуза прямоугольного треугольника с катетами в 39 и 15 футов. Длина такого пути окажется чуть больше 41,78 фута.
[Это лойдовский вариант известной головоломки Генри Э. Дьюдени «Паук и муха». [37] Изменив размеры комнаты, Лойд так преобразовал задачу, что в ней приходится совершенно иначе разрезать и разворачивать комнату на плоскость. – М. Г.]
264. [Хотя С. Лойд уделяет этой головоломке мало внимания и приводит ответ, не объясняя способа решения, это одна из наиболее интересных задач в его сборнике, где приходится сочетать алгебраические и диофантовы методы.
37
Дьюдени Г. Э. Кентерберийские головоломки. – М.: Мир, 1979, с. 113.
Один из способов решения состоит в следующем. Пусть х– число первоначально купленных щенков, а также число крыс. Число щенков среди семи оставшихся животных обозначим через у,тогда число оставшихся крыс будет равно 7 – у.Число проданных щенков (по 2,2 бита за каждого, учитывая 10 %-ную надбавку) будет х – у,а число проданных крыс (по 2,2 бита пара, или по 1,1 бита за штуку) составит х –7 – у.
Выражая условия задачи в форме уравнений и упрощая их, мы приходим к следующему диофантову уравнению с двумя неизвестными, которое нужно решить в целых числах: 3х= 11у+77.
Кроме того, нам известно, что уне превосходит 7.
Испробовав 7 возможных значений у,мы находим, что только при у= 5 и 2 величина хоказывается положительной. Эти значения привели бы к двум различным решениям задачи, если бы не то обстоятельство, что крысы покупались парами. Если у= 2, то число купленных крыс, 33, оказалось бы нечетным. Следовательно, мы должны исключить эту возможность и сделать вывод, что у=5.
Теперь можно восстановить всю картину. Торговец купил 44 щенка и 22 пары крыс, заплатив всего 132 бита. Он продал 39 щенков и 21 пару крыс, за которых получил 132 бита. У него осталось 5 щенков ценой в 11 битов (с учетом надбавки) и 2 крысы ценой в 2,2 бита. Цена всех 7 животных составила, таким образом, 13,2 бита, что как раз и равно 10 % от 132 битов. – М. Г.]
265.
266. Кусок миссис Хогэн содержал 58 1/3 фута, а в куске Мэри О'Нейл было 41 2/3 фута.
267. Одна корова стоила 15, другая – 50 долларов.
268. [Эта головоломка С. Лойда представляет собой разновидность известной задачи, которую можно встретить во многих учебниках. (Обычно в ней речь идет о человеке в лодке, который гребет до некоторой точки на берегу, где высаживается, а потом идет к цели с большей скоростью.)
Задачу можно решить следующим образом. Обозначим через храсстояние от поворота дороги до того места, где лошади перепрыгивают через стену; тогда расстояние от этого места до столба с отметкой «1 миля» равно 1- х.Мы знаем, что скорость лошади составляет 35 миль в час по дороге и 26 / 4мили в час по рыхлому грунту. Общее время, затраченное на такой срезанный путь, будет равно
Вопрос состоит в том, при каком значении хэта величина будет минимальной? Дифференцируя данное выражение по хи приравнивая его к нулю, мы находим, что это значение приблизительно равно 0,85 мили, то есть лучшее место, где следует перепрыгнуть через изгородь, расположено в 0,15 (или чуть более У 7) мили от столба с отметкой «1 миля». – М.Г.]
269. Десять монет можно расположить так, как показано на рисунке, в результате чего получится 16 рядов с четным числом монет.
270. [Если мы через хобозначим деньги миссис Смит, а через у –деньги ее супруга, то цена рощи окажется равной у/3,а также х/4.А нам известно, что 3х/4 +у=5000и 2у/3 + х=5000.
Из этих уравнений мы находим, что у мистера Смита было 2500 долларов, а у его жены – 3333 1/3 доллара, отсюда стоимость рощи составляет 833 1/3, доллара. – М. Г.]
271. Кот Виттингтона может схватить всех мышей, двигаясь по пути А – 4 – С – 1 – Y – 5 – 2 – 2 – 6 – X – 3 – Z.
Если часы бьют 6 раз за 6 с, то интервал между двумя ударами составляет 1 1/ 5с. Тогда, чтобы пробить 11 раз, требуется 10 таких интервалов, на что уйдет 12 с.
272. [Пусть х– стоимость содержания. Мы можем составить уравнение х– 34 = 13 = 1/4 – х,откуда х –62 2/3. Мы вычитаем отсюда доход в 34 доллара и находим, что потери составили 28 2/3 доллара. – М. Г.]