Самые знаменитые ученые России
Шрифт:
За выдающиеся достижения в науке Севергин был избран в члены Стокгольмской академии наук, Иенского минералогического общества и ряда других российских и зарубежных научных учреждений и обществ. Он был в числе учредителей Петербургского минералогического общества. Глубокие знания позволяли Севергину смело говорить о длительности геологических процессов. Он допускал, что со временем, вследствие разрушения гор и заполнения впадин, земная поверхность будет, вероятно, совершенно выровнена, то есть, наступит то состояние, которое в современной геологии известно под названием пенеплена. Вот уж поистине: «Все повинуется времени; все должно родиться, быть и умереть…»
Скончался Севергин 29 ноября 1826 года.
Один
Николай Иванович Лобачевский
Математик, создатель «мнимой» или неевклидовой геометрии.
Родился 20 ноября 1772 года в Нижнем Новгороде.
В 1800 году мать Лобачевского, потеряв мужа, переехала в Казань. Там, в 1807 году, окончив гимназию, Лобачевский поступил в Казанский университет.
В университете Лобачевский слушал математику у замечательного педагога Г. И. Карташевского. Видимо, Карташевский разбудил у Лобачевского интерес к математике; сам Лобачевский увлекался в то время медициной и всерьез намеревался перевестись на медицинский факультет.
Несмотря на некоторое «вольнодумство и мечтательное о себе самомнение», несмотря даже на «возмутительные поступки…, оказывая которые в значительной мере явил признаки безбожия», Лобачевский не только окончил Казанский университет, но, благодаря проявленному интересу к науке, был оставлен при университете для дальнейшего совершенствования и подготовке к профессорскому званию.
В 1811 году Лобачевский был утвержден магистром, в 1814 году – адъюнктом университета. Внешне жизнь текла равномерно, мало кто знал, что время от времени эту внешне спокойную жизнь немало потрясали крупные карточные проигрыши жены, злоупотреблявшей азартными играми.
Впрочем, с этими потрясениями Лобачевский справлялся.
В 1816 году он уже экстраординарный, а в 1822 году – ординарный профессор.
В 1820–1821 годах, а затем в 1923–1825 годах он – декан физико-математического факультета, а с 1827 по 1846 год – ректор университета.
Начало самостоятельной работы Лобачевского совпало с яростной чисткой, устроенной в Казанском университете известным политическим деятелем того времени М. Л. Магницким. Неистовый поборник законопослушности и богобоязненности Магницкий даже рекомендовал императору Александру I вообще закрыть Казанский университет, как «рассадник вольнолюбивой заразы», но, к счастью, император решил обойтись менее крутыми мерами. К тому же, российские власти в те годы были озабочены развитием русской культуры в регионе, в котором еще достаточно сильно чувствовалось исламское влияние.
С Казанским университетом судьба связала Лобачевского навсегда.
Лобачевский никогда не бывал за границей, да и по России практически не ездил. Несколько раз, правда, побывал в Петербурге и в Дерпте, а однажды посетил Гельсингфорс – был приглашен на юбилейные торжества, устроенные в местном университете.
Университет Лобачевский любил.
Годы, отданные университету, сделали Лобачевского известным в Казани человеком. Он умел организовать самую сложную работу и всегда добивался успехов. Там, где требовалась особая ответственность, выдвигали именно Лобачевского. Надо было привести в порядок библиотеку, библиотекарем непременно назначали его, пусть даже приходилось совмещать такую работу с ректорской; начиналось строительство, Лобачевского непременно вводили в строительный комитет, даже избирали председателем. Он явился инициатором издания и первым редактором «Ученых записок Казанского университета». При Лобачевском в Казанском университете были организованы новые клиники, анатомический театр, большой физический кабинет, астрономическая обсерватория. Лобачевский состоял членом особого комитета, созданного для наблюдения за деятельностью училищ округа, а в 1830 году был отмечен высочайшим благоволением за то, что сумел организовать противостояние холере, свирепствовавшей в Поволжье.
В 1823 году Лобачевский подготовил к печати свой собственный курс геометрии, в котором изложение материала существенно отличалось от традиционного. Говоря, например, о знаменитом пятом постулате Евклида, Лобачевский отмечал, что строгое доказательство его невозможно, а известные доказательства являются всего только объяснениями. Рукопись курса была отправлена на заключение петербургскому академику Н. И. Фуссу, известному своими работами в области сферической геометрии и тригонометрии.
Фусс дал о курсе достаточно резкий отзыв.
Между прочим, особенно возмутило Фусса то, что Лобачевский пытался ввести в своем учебнике в качестве единицы длины метр, в чем академик усмотрел влияние французских революционных идей, разумеется, крамольных.
Обидевшись, Лобачевский даже не востребовал рукопись обратно.
Через три года, 11 февраля 1826 года, в Казанском университете произошло историческое событие. В этот день на заседании Отделения физико-математических наук ординарный профессор Лобачевский сделал сообщение о своем сочинении «Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных». В протокольной записи заседания осталась следующая запись: «Слушано представление господина Ординарного профессора Лобачевского от 6 февраля сего года, с приложением своего сочинения на французском языке… о котором желает он знать мнение членов Отделения, и ежели оно будет выгодно, то просить сочинение принять в составление ученых записок Физико-математического факультета».
О содержании указанного сочинения можно судить по тем отрывкам, которые позже вошли в первую часть работы Лобачевского «О началах геометрии», опубликованную в «Казанском вестнике». В 1835 году в «Научных записках Казанского университета» была опубликована работа Лобачевского «Воображаемая геометрия», а в 1835–1838 годах – «Новые начала геометрии с полной теорией параллельных линий».
Теорема о параллельных, указанная Лобачевским, долгое время занимала умы многих ученых. Сколько было потрачено сил на ее доказательство подсчитать попросту невозможно. Эта теорема, больше известная как постулат Евклида, гласит: в данной плоскости к данной прямой можно через данную, не лежащую на этой прямой, точку провести только одну параллельную прямую. В отличие от остальных аксиом элементарной геометрии, аксиома параллельных не обладает свойством непосредственной очевидности. Это понятно уже из того, что речь в ней идет о всей бесконечной прямой в целом, тогда как человеческий опыт имеет дело лишь с большими или меньшими отрезками прямых.
Доказать аксиому параллельных, то есть вывести ее из остальных аксиом геометрии, ученые пытались чуть ли не с самого зарождения геометрии. В свое время это делал Птолемей, в средние века – Насир ад-Дин, в XVIII веке – французы Ламберт и Лежандр, но все они потерпели неудачу.
Лобачевский, как многие до него, тоже начал с того, что принял противоположное этой аксиоме допущение: к данной прямой через данную точку можно провести по крайней мере две параллельные. Он стремился привести такое допущение к очевидному противоречию, однако, по мере того, как он развертывал все более и более длинную цепь следствий, вытекающих из указанного допущения, становилось все более ясным, что никакого противоречия не только не возникает, но, похоже, и не может возникнуть.