Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
2.6. Применить метод подобия, выбрав за центр подобия одну из вершин треугольника, А или С.
2.7. Если прямую FЕ (рис. I.2.7) вращать около точки M, то площади треугольников ОМF и ОМЕ будут изменяться так, что с увеличением одной уменьшается другая. Это должно навести на мысль рассмотреть некоторое среднее положение.
2.8.
2.9. Чтобы подойти к решению задачи, нужно построить из отрезков АР, ВР и СР ломаную с закрепленными концами и посмотреть, когда эта ломаная будет выпрямляться.
2.10. Зная гипотенузу, можно построить окружность, в которую вписан искомый прямоугольный треугольник АВС. Если биссектрису CD продолжить до пересечения с этой окружностью в точке E, то получим две равные дуги АЕ и ЕВ. Следовательно, отрезок ОЕ, соединяющий точку E с центром круга, перпендикулярен к AB и равен c/2. Теперь все данные в условии элементы связаны между собой.
2.11. Пусть известны углы при вершинах А и D четырехугольника и его стороны AB = а, BC = b, CD = с. Если угол ВАD закреплен, то положение точки С определяется с помощью метода геометрических мест.
2.12. Пусть AM (рис. I.2.12) — искомая секущая и AB = ВМ. Чтобы связать ее с данной окружностью, соединим точки О и В. Если отрезок ОВ продолжим за точку В и отложим BC = ОВ = R, то точки О, А, С и M будут вершинами параллелограмма.
2.13. Пусть через точку M пересечения двух окружностей с центрами О и О1 (рис. I.2.13) проведена секущая AB данной длины. Проведем к ней перпендикуляры ОС и О1D. Отрезок CD вдвое меньше отрезка AB, так как точки С и D — соответственно середины хорд AM и МВ.
2.14.
2.15. Так как длина отрезка PQ и несущая его прямая известны, то можно воспользоваться методом параллельного переноса.
2.16. Нужно построить отрезок FD (рис. I.2.16), делящийся в точке M пополам. Следовательно, его можно рассматривать как одну из диагоналей параллелограмма. В качестве одной из вершин параллелограмма удобно выбрать точку В. Отразив ее симметрично от точки M, получим еще одну вершину.
2.17. Если через точки А и В провести прямую, то она, вообще говоря, должна пересечь прямую PQ в некоторой точке С. Остается воспользоваться свойством секущей и касательной, проходящих через общую точку. Случай, когда AB и PQ параллельны, рассмотрите отдельно. (!)
2.18. Соединить точку M с концами А и В данного диаметра. Рассмотреть получившиеся точки пересечения с окружностью.
2.19. Воспользоваться предыдущей задачей и построить произвольный перпендикуляр к данному диаметру, пересекающий окружность в точках С и D.
2.20. Какую бы точку С на прямой l мы ни взяли, величина |AC– BC| в силу неравенства треугольника не может превзойти длины отрезка AB. Следовательно, существует точка прямой l, отвечающая требованиям задачи. По условию точки А и В лежат по разные стороны прямой l. Принципиально ли это требование, или же можно сформулировать эквивалентную задачу для точек, лежащих по одну сторону прямой l?
2.21. Для построения естественно воспользоваться обычным методом геометрических мест. Каждая вершина квадрата лежит на внешней половине окружности, построенной на стороне четырехугольника как на диаметре. Чтобы отыскать второе геометрическое место точек, которому принадлежат вершины, нужно выяснить, что связана какая-то из линий, определяющих вершины, с данным четырехугольником. Рассмотрите с этой целью диагональ квадрата.
2.22. Дан отрезок и известно, что его длина 7. Отрезок длины 1 не известен. Если бы он был дан, то отрезок длины 7 можно построить, как только мы построим отрезок длины 3. Затем построим гипотенузу прямоугольного треугольника со сторонами 3 и 2.
2.23. Решение можно искать только при одновременном выполнении условий:
K главе 3
3.1. Чтобы связать участвующие в задаче элементы, нужно отрезок ОА луча, перпендикулярного к ребру, спроецировать на другую полуплоскость. Проекцию ОВ этого отрезка спроецировать в отрезок ОС, лежащий на втором луче.