Чтение онлайн

на главную

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

4.8. Чтобы вычислить площадь треугольника ABE, достаточно найти его высоту ЕМ (рис. I.4.8). Высоту B1O призмы нетрудно вычислить, а высота EK пирамиды EABC в два раза меньше B1O.

4.9. Чтобы построить сечение, достаточно провести через точку F

два отрезка, лежащих внутри данного параллелепипеда: один в одной диагональной плоскости параллельно BD, а второй в другой диагональной плоскости параллельно AC1.

4.10. Построение тени, отбрасываемой кубом, показано на рис. I.4.10. Посмотрите, как будет изменяться тень при вращении источника света.

4.11. Площадь тени не изменится при произвольном параллельном переносе куба. Поэтому удобно расположить куб так, чтобы по крайней мере одна из его вершин (обозначим ее А) лежала в плоскости (рис. I.4.11).

Площадь тени не изменится также и при вращении куба вокруг вертикальной прямой, проходящей через вершину А. Следовательно, для определения положения куба удобно воспользоваться острым углом между плоскостью его нижнего основания и плоскостью , который при таком вращении не изменяется.

Задача существенно упростится, если удастся выбрать в кубе простейшую фигуру, составленную из плоских фигур, которая отбрасывает на плоскость ту же самую тень.

K главе 5

5.1. Если точка M принадлежит геометрическому месту точек, то отрезок виден из нее под прямым углом. (!)

5.2. Если к треугольнику АМВ применить теорему косинусов, то получим еще одно соотношение, связывающее угол АМВ со сторонами треугольника.

5.3. Поскольку характеристики геометрического места точек содержатся в условии задачи, вполне удобно доказать, что любая точка окружности обладает указанным свойством. Для этого следует применить теорему косинусов к стороне МВ треугольника АМВ.

5.4. При любом выборе точки M треугольники АМВ и ВМС имеют общую сторону ВМ. Использовать условие равновеликости двух треугольников, имеющих общую сторону.

5.5. Пусть точка M зафиксирована. Площадь треугольника АВМ не изменится, если отрезок AB двигать по прямой AB. То же самое можно сказать о треугольнике СDМ. Остается рассмотреть два случая: 1) прямые AB и CD пересекаются, 2) прямые AB и CD параллельны.

5.6. Выясните, какую роль играет в задаче куб. Задачу можно разделить на две: вначале решить ту же задачу для прямых, на которых расположены диагонали куба, а затем высечь часть пространства, ограниченную кубом, и проследить, какие при этом произойдут изменения.

K главе 6

6.1. Воспользоваться тождеством p^2 - 1 = (p– 1)(p + 1).

6.2.

Способ 1.
Воспользоваться методом математической индукции. (!)

Способ 2. Разбить все числа на классы по модулю 3:

n = 3k, n = 3k + 1, n = 3k– 1,

и проверить утверждение для каждого класса. (!)

6.3. Поскольку 105 = 3 · 5 · 7, то а105 = (а^3)35 = (а5)21 = (а7)15. Воспользуйтесь этим для разложения данного числа на множители.

6.4. Среди чисел от 1 до 500 будет 250 четных, 125 делящихся на 4 и т. д.

6.5. Чтобы данное число приняло более симметричный вид, его удобно умножить на 10. При этом делимость его на 81 не изменится.

6.6. Дополнить выражение n4 + 4 до полного квадрата и разложить на множители.

6.7. Так как по условию n четное, то нужно сделать подстановку n = 2k и привести данное выражение к общему знаменателю.

6.8. Способ 1. Дробь

 сократима тогда и только тогда, если ее числитель представим в виде pr, а знаменатель — в виде qr, где pq и r — целые числа и r /= ±1.

Способ 2. Если сократима дробь p/q , то сократима и дробь q/p.

6.9. Использовать сначала признак делимости на 4, а затем признак делимости на 9. (!)

6.10. Если условие, в силу которого число

 в три раза меньше
 записать символически, то получим уравнение, которое нужно будет решить в целых числах, каждое из которых расположено между 0 и 9.

6.11. Ясно, что число p нечетное. Одно значение p легко угадать — это p = 3. Есть ли другие?

6.12. Задачу удобнее решать от противного, исходя из предположения, что tg 5° = p/q , где p и q — целые.

6.13. Если меньшее из чисел не оканчивается цифрой 9, то суммы цифр этих чисел различаются на 1. Поэтому обе суммы цифр одновременно делиться на 11 не могут. Нужно искать решение среди чисел, меньшее из которых оканчивается одной или несколькими цифрами 9.

Поделиться:
Популярные книги

Энфис 5

Кронос Александр
5. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 5

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2