Шелест гранаты
Шрифт:
Казалось бы, движение ионов в газе под действием электрического поля должно быть ускоренным: ведь на заряженные частицы действует сила. Но на своем пути ион испытывает огромное число столкновений с нейтралами, при каждом передавая им часть своей энергии и даже — меняя направление движения. При давлении газа в несколько атмосфер, путь, проходимый между столкновениями (длина свободного пробега) в десятки миллионов раз меньше межэлектродного расстояния дрейфовой трубки. Отбор энергии в столкновениях с нейтралами приводит к изменению характера движения — ион «дрейфует»
Иногда приходится сталкиваться с представлением, что, если между электродами есть разность потенциалов и появились носители заряда, то импульс тока в цепи можно зарегистрировать лишь при приходе заряда на один из электродов. Это не так: ток будет протекать в течение всего времени дрейфа и закончится только тогда, когда будет нейтрализован последний носитель заряда. Распределение зарядов в дрейфовой трубке было причиной того, что дрейфовый ток имел две составляющие: объемный заряд отрицательных носителей дрейфовал к электроду с самым высоким положительным потенциалом (на рис. 4.9 — двигался вверх), причем на этом электроде происходила непрерывная нейтрализация отрицательных носителей, а значит, и индуцированный ими ток уменьшался (его форма напоминала «треугольник»). Напротив, пакет положительных ионов был компактен а дистанция его дрейфа — больше, поэтому положительные носители индуцировали постоянный ток вплоть до момента, когда они нейтрализовались на измерительном электроде, имевшем нулевой потенциал.
Эти составляющие и образовывали результирующий сигнал (рис. 4.10) — падение напряжения на резисторе, которое регистрировалось осциллографом.
Скорости дрейфа ионов в смесях гелия-3 и аргона были пропорциональны приведенным напряженностям. Подтверждалось и «открытие» Затычкина: длительности дрейфовых токов соответствовали ионам компоненты смеси с наинизшим потенциалом ионизации.
Из осциллограмм также следовало, что в исследованных смесях газов не дрейфуют свободные электроны! Об этом свидетельствовала длительность «треугольного» импульса в начале осциллограммы дрейфового тока: он был типично «ионным», индуцируемый более быстрыми электронами должен был быть «короче» на два порядка!
Объяснение виделось только одно: свободные электроны исчезли из-за наличия примесей электроотрицательных газов. Конфигурация электронных оболочек некоторых молекул такова, что присоединение электрона энергетически выгодно: он «прилипает» к такой молекуле, образуя отрицательный ион. Энергия связи электрона в отрицательном ионе — десятые доли электрон вольта и при нормальных условиях (когда тот же воздух не нагрет мощной ударной волной, не ионизуется интенсивным излучением, когда отсутствует сильное электрическое поле) именно они являются основными носителями отрицательных зарядов. Газы, способные образовывать отрицательные ионы — кислород, углекислый газ и пары воды — в основном составляют и «загрязняющие» примеси в технических газах, применяемых для наполнения счетчиков.
Поскольку плотность газов в трубке была высока, уже на небольших расстояниях от весьма узкой области коронирования происходило достаточное число столкновений электронов с молекулами загрязняющих примесей, чтобы основными носителями отрицательного заряда стали ионы. Из этого следовало два важных вывода:
— дрейф электронов не оказывает существенного влияния на кинетику носителей заряда также и в счетчике;
— исследовать кинетику электронов можно либо на несколько порядков снизив плотность исследуемых газов (уменьшив тем самым число столкновений в процессе дрейфа, а значит, и вероятность захвата электрона), либо — получив для измерений сверхчистые газы, в которых концентрация примесей была бы снижена на столько же порядков.
Пока же примесей было столько, что в гелии-3 (рис. 4.1 L) даже положительные ионы были чужеродными (их подвижность обычно выше), но представления о производстве, приобретенные за годы работы, не способствовали развитию иллюзий о том, что результаты дрейфовых измерений станут причиной кардинального улучшения очистки технических газов. Что же касается исследований в существенно менее плотных газах, то тут перспективы были кошмарными: расчетные времена дрейфа ионов становились сравнимыми с длительностью переходных процессов в уже разработанной схеме, что делало невозможными сколь-нибудь точные измерения. Для исследования же кинетики куда более быстрых электронов тем более надо было создавать совершенно новую схему, но было непонятно, к чему подобные мучения, если при разработке счетчиков эти данные все равно не пригодятся. Довольно легко было убедить Тугого, что из темы диссертации и плана работ исследования кинетики электронов надо изъять, но был в составе совета человек, от которого можно было ожидать по этому поводу бурной истерики. На очередное заседание ученого совета представили скорректированную тему диссертации, научным руководителем которой было предложено оставить лишь Тугого.
Истерика действительно бабахнула многотонной бомбой, но, к счастью, не тогда, когда это представлялось наиболее опасным.
После рассказа о схеме и конструкции дрейфовой трубки, я показал осциллограммы токов через искровые разрядники и уже собирался ступить на очень опасную зыбь — продемонстрировать и прокомментировать первые осциллограммы дрейфовых токов, как вдруг раздался громкий фальцет Затычкина: «А почему в вашей дрейфовой трубке — медные уплотнительные
Начался монотонный процесс измерений. Дрейфовую трубку наполняли в отделе смесями очень дорогого гелия-3 до максимального давления, я нес ее в подвал, где проводил измерения сначала при максимальном давлении, а потом постепенно стравливал газ и опять проводил измерения. Вести себя при этом надо было, привлекая как можно меньше внимания: среди людей работавших в подвале были и закончившие аспирантуру, но не защитившиеся, они часто посмеивались над «бессмысленным» рвением, но, заподозрив, что что-то получается, могли и навредить. Не раз уже приходилось убеждаться, что зависть — сильное чувство, управляющее поступками многих людей. В подвал часто заглядывал и бывший однокашник, любивший радовать окружающих разнообразными анекдотами и всегда пребывавший в отличном настроении.
4.3. Нейтроны, подводные лодки и внезапно появившиеся электроны
Рутинность измерений была прервана очередной кампанией. Одна из организаций Средмаша создавала комплекс аппаратуры обнаружения подводных лодок на небольших глубинах (вероятно — в режиме предстартовой подготовки ракет). Было задумано засечь нейтронный «след» лодочного реактора, для чего требовались чрезвычайно чувствительные счетчики. Требования эти превышали разумные и руководство НИИ ВТ скептически относилось к перспективам работы, выдвигая в обоснование своей позиции множество технологических причин, и среди прочих — недостаточную чистоту газов-наполнителей. Результатом этой борьбы было то, что в лабораторию была доставлена «для пробы» партия гелия-3 совсем уж умопомрачительной стоимости, прошедшего «специальную» очистку. Тугой загорелся идеей провести дрейфовые измерения в этом газе, он говорил, что потом, при защите диссертации можно будет упомянуть о результатах, нашедших важнейшее военное применение. Однако прецедент с датчиком приземного срабатывания был еще памятен: такой козырь мог сыграть только в случае успешной разработки всего комплекса, что представлялось маловероятным (впоследствии сомнения подтвердились). Тем не менее, измерения в сверхчистом гелии-3 были проведены. Результаты удивили: во-первых, скорости дрейфа ионов не были пропорциональны приведенным напряженностям, если последние были невелики (рис. 4.12, ср. с рис. 4.11). Дрейфовали ионы в сверхчистом гелии-3 медленнее, чем в техническом при тех же условиях. Во-вторых, практически исчезли «треугольники» в начале осциллограмм дрейфовых токов, уступив места коротким, но очень мощным «всплескам»: в пространстве дрейфа появились свободные электроны. Врагом самому себе становиться не хотелось и об электронах я решил не говорить никому. Данные о кинетике ионов и так были очень интересны: разумным объяснением «непропорциональному поведению» скоростей дрейфа при малых напряженностях было увеличение массы ионов за счет объединения вокруг каждого из них нейтральных молекул гелия-3. Такие конгломераты называют кластерами, в газах с полярными молекулами их уже достаточно подробно изучили другие, но появление кластеров в благородном газе выглядело необычно. Позже выяснилось, что надежды на то, что кластеры наблюдалось в благородном газе впервые, были напрасны: после скрупулезного просмотра статей о ионах в гелии, обнаружилось, что о подобном уже писали двое немцев: Хайде и Попеску (фамилия последнего была явно не немецкой, и даже звучала двусмысленно, но это ничего). Они исследовали кинетику ионов в очень чистом, широко распространенном гелии-4, но все равно их информация была ценной: сравнение с результатами, полученными при тех же условиях в гелии-3, позволяло судить о характере атомных взаимодействий.
… Если соударения ионов с нейтралами газа носят упругий [45] характер, то для различных изотопов одного и гого же газа должна сохраняться и величина сечения соударения. Из кинетического уравнения для ионов следует, что скорость их дрейфа зависит от этого сечения, распределения ионов по скоростям и обратно пропорциональна квадратному корню из их массы. Нет никаких разумных оснований полагать, что функции распределения по скоростям различаются для изотопов. Для больших напряженностей поля, когда скорости дрейфа им пропорциональны, разница значений этих скоростей в гелии-4 и гелии-3, составляла 13–16 %, в то время как отличие корней квадратных из масс этих изотопов составляет 15 %. Вполне можно было сделать вывод, что, при достаточно высоких напряженностях внешнего электрического поля столкновения ионов гелия с нейтралами этого газа носят упругий характер. Однако когда поле становилось слабее, повышалась и вероятность неупругих взаимодействий, свидетельством чему было образование кластеров. В свою очередь, и разница дрейфовых скоростей кластеров из различных изотопов гелия давала основания для вывода, что, образовавшись, они участвовали в столкновениях по «упругому» сценарию.
45
Принято следующее деление сценариев, по которым происходят соударения микрочастиц: — упругие, при которых меняются скорости, но не меняются внутренние состояния частиц, например — энергетические уровни; — квазиупругие, при которых меняются и скорости и внутренние состояния; — неупругие, в ходе которых образуются новые частицы