Сила молодости. Как настроить ум и тело на долгую и здоровую жизнь
Шрифт:
Ученые активно изучают методы борьбы со старением и выявляют гены, которые управляют этим процессом. К примеру, они сравнивают геном старых и молодых людей и при помощи компьютера выделяют места, где наблюдается наибольшее количество генетических повреждений.
Кроме того, известно, что старение вызывается укорочением теломер в процессе деления клеток. Теломеры располагаются на концах хромосом и осуществляют функцию защиты ДНК. В конце XX столетия удалось выяснить, что активация теломеразы, отвечающей за удлинение теломер, делает отдельную клетку бессмертной. Об омолаживающем потенциале теломеразы говорят в течение уже многих лет.
Учеными были разработаны специальные инъекции гена теломеразы – TERT. Конкретный подход применения TERT-терапии был подтвержден
Полученные результаты позволяют предположить, что генная терапия в перспективе сможет не только побороть все наследственные заболевания, но и помочь человечеству победить старение и смерть.
Несколько слов о секвенировании
Открытие ДНК и РНК дало науке мощный толчок для того, чтобы найти надежные способы определения последовательности нуклеотидов. Все они объединены общим термином – «секвенирование».
Технологии секвенирования приближают нас к будущему геномной медицины. Расшифровка генетического кода открыла перед учеными и медиками невиданные перспективы и позволила решить целый ряд прикладных и фундаментальных задач: создание новых лекарств, вакцин и иных продуктов. Технологии секвенирования не только помогают выявить скрытые болезни, но и дают возможность проникнуть в эволюционную историю человека, животных и растений, а также понять причины массовых вымираний, происходивших на Земле. Секвенируя геномы останков, ученые узнают о происхождении видов, возрасте организма и о том, какие были условия среды в месте обитания. Именно с помощью изучения фрагментов ДНК был выделен новый вид древних людей – денисовцев [2].
Изначально секвенирование было очень дорогостоящим методом и позволить себе его могли только очень богатые люди и организации. Сегодня заказать или выполнить самостоятельно эту процедуру способна почти каждая научная или медицинская лаборатория. Существует немало компаний, выполняющих генетический тест и предлагающих индивидуальные рекомендации, которые помогут улучшить здоровье и продлить жизнь. Если знать, что один из генов дефектный, можно сгладить вред от его проявления разными способами, например коррекцией образа жизни или лекарственной терапией. Такой персонализированный подход считается более совершенным по сравнению с текущим уровнем развития медицины и несомненно полезным для сферы исследований процесса старения.
Таким образом, с помощью чтения генома можно раскрыть тайны закодированного в нем долголетия и изменить жизнь человека к лучшему, активировав «гены бессмертия» и защитив их от повреждений.
Что такое метагеном?
Технология секвенирования открыла новые горизонты не только перед генетиками, но и перед микробиологами. Ранее ученые могли исследовать геном только тех микроорганизмов, которые можно было вырастить на питательных средах. Благодаря секвенированию появилась возможность получать информацию о микробах, имея в распоряжении только их ДНК, РНК или даже фрагменты генетического материала. Развитие этой технологии привело к появлению нового раздела молекулярной генетики – метагеномики. В рамках этой дисциплины эксперты изучают гены не конкретных клеток в составе организма или в микробных клетках, а метагеном – совокупность всех генов в каком-либо образце.
Образцы для последующего метагеномного анализа могут быть получены из различных участков тела человека: метагеном полости рта, кожи кишечника, влагалища. Также это могут быть образцы, полученные из окружающей среды. Например, в 2003 году ученые использовали метод секвенирования для метагеномного анализа проб океанской воды, полученных из различных уголков планеты [3]. В результате только в образце из Саргассова моря эксперты обнаружили порядка двух тысяч образцов ДНК различных видов, в том числе 148 бактерий, ранее неизвестных науке.
Изучение метагенома помогает не просто провести генетический анализ микробов, но понять законы, по которым живут микробные сообщества, отследить их взаимное влияние и метаболические цепи. Это позволяет получить глубокое представление о жизни микромира внутри нас и вокруг нас.
Заключение
В настоящее время анализ ДНК составляет основу биологических исследований и применяется в биотехнологиях, вирусологии и медицинской диагностике. Разрабатываются и совершенствуются новые технологии для распознавания различных заболеваний, таких как диабет, рак, нейродегенеративные и сердечно-сосудистые болезни, которые сильно снижают качество жизни и вносят большой вклад в общую статистику смертности населения. Ранняя диагностика и точное лечение, которые становятся возможными благодаря генетическим методам и глубокому пониманию строения организма на молекулярном уровне, приведут к продлению жизни и помогут победить старение.
Глава 3. Эпигенетика
Эпигенетика – относительно новое направление генетики, которое называют одним из самых важных открытий с момента расшифровки ДНК, поскольку оно обещает перевернуть всю нашу жизнь, а также жизни наших потомков. Ранее считалось, что генетический код, с которым мы рождаемся, определяет все наше существование. Однако теперь известно, что генами можно управлять: «включать» или «выключать» их под воздействием различных факторов, например образа жизни или окружающей среды. Это значит, что генетика отнюдь не предопределяет наше состояние здоровья или продолжительность жизни – мы сами «нажимаем на кнопки» генетических изменений и тем самым управляем своей дальнейшей судьбой.
«Над» генетикой
Эпигенетика (приставка эпи- с древнегреческого языка переводится как «над», «сверху») – наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Говоря простым языком, она исследует то, как гены «включаются» или «выключаются» под воздействием факторов внешней среды. Можно представить, как некий «командир» отдает приказы генам в определенный момент работать или, наоборот, отдыхать (или «молчать») в зависимости от полученного сигнала. Таким «командиром», определяющим активность генов, выступает эпигеном, а сигналами для него служат экологическая среда, режим питания, физические нагрузки, вредные и полезные привычки, токсины, вирусы, биохимические процессы, происходящие в организме, а также мысли, эмоции, чувства и поведение человека.
ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Но и самим генам нужны «инструкции», по которым можно выстроить ход и время своей работы. И сборником таких «инструкций» выступает наш другой код – эпигенетическая программа, которая сообщает организму, как в действительности должны работать наши гены.
Как работает эпигенетический механизм
Основные пути регуляции активности генов – модификация гистонов и метилирование. Гистоны – особые белки, на которые, как на катушку, намотана ДНК в ядре клетки, что образует плотную упаковку – нуклеосому. Чем плотнее эта упаковка, тем меньше ДНК доступна для ферментов, ведущих транскрипцию – синтез РНК по матрице ДНК. А поскольку меньше РНК, постольку меньше производится белка. Это значит, что ген в этой области будет мало или вовсе не активен. Однако сигналы, получаемые из внешней для клетки среды, могут способствовать более свободному расположению этих «катушек», благодаря чему ферменты получают доступ к этому участку ДНК. Это значит, что РНК, а затем и белки могут быть синтезированы – ген активен.