Чтение онлайн

на главную

Жанры

Симфония № 6. Углерод и эволюция почти всего
Шрифт:

Углерод же отличался от всех. Расчеты того времени показывали, что нет простого пути, приводящего к его синтезу. Отсюда следовало, что этот элемент должен быть довольно редким. Но измерения его концентраций в звездах, выполненные Сесилией Пейн и ее коллегами, указывали на то, что углерод является четвертым по распространенности элементом во Вселенной. Чтобы объяснить это несоответствие, Хойл предложил детально продуманный механизм, названный тройным альфа-процессом [22] . Исследователь знал, что более старые звезды накапливают в своих недрах ядра гелия-4 (т. е. альфа-частицы). При взаимодействии двух альфа-частиц легко образуются ядра бериллия-8 – с четырьмя протонами и четырьмя нейтронами. А затем все, что нужно сделать для преобразования бериллия-8 в углерод-12, – это добавить еще одну альфа-частицу. Но есть загвоздка: бериллий-8 чрезвычайно нестабилен и распадается на части менее чем за одну квадриллионную

секунды. Поэтому предположение, что углерод-12 образуется при добавлении третьей альфа-частицы к хрупкому бериллию-8, кажется невероятным.

22

Более подробное описание вы можете найти в книге: D. A. Ostlie and B. W. Carroll, An Introduction to Modern Stellar Astrophysics (San Francisco: Addison-Wesley, 2007).

Прорыв Хойла заключался в том, чтобы найти некое соответствие в природе. При энергии, близкой к 7,68 МэВ, ядро углерода-12 находится в особом, ранее не учтенном состоянии резонанса. Именно такое значение необходимо бериллию-8, чтобы захватить альфа-частицу, прежде чем распасться. Хойл подсчитал, что скорость синтеза углерода-12 в ходе тройного альфа-процесса возрастает приблизительно в миллиард раз. Физики-экспериментаторы восприняли эту идею скептически, поскольку углерод считался хорошо изученным и никаких резонансных состояний не обнаруживалось. Тем не менее Хойл убедил исследователей в Калифорнийском технологическом институте поискать это «состояние Хойла», которое вскоре и было ими подтверждено. Предсказание Хойла разрешило проблему несоответствия распространенности углерода и между делом позволило ученому мгновенно получить международное признание в развивающейся области астрофизики.

Хойл обрел славу и почести, дав объяснение звездному нуклеосинтезу, но его карьера оказалась полна противоречий. Ярый критик доминировавшей в то время космологической точки зрения, он придумал выражение «Большой взрыв» скорее как уничижительный термин, но тот в конечном счете прижился. Он предпочитал концепцию устойчивой Вселенной, независимой от ветхозаветного «момента творения». Хойл также поддерживал панспермию – спорную концепцию, что жизнь на Землю была занесена из космоса. В повсеместно осмеянной версии панспермии Хойла начало жизни дали рожденные в комете вирусы, которые до сих пор иногда вызывают глобальные эпидемии. И он горячо поддерживал идею, что нефть и природный газ образуются в ходе небиологических процессов глубоко в мантии Земли. Эта противоречивая гипотеза сейчас заново рассматривается учеными Обсерватории глубинного углерода. Когда Хойла спрашивали о его склонности занимать такие противоречивые позиции, он отвечал: «Лучше быть интересным и неправым, чем скучным и правым» [23] .

23

Цит по: Mitton, Fred Hoyle.

Рассеивание углерода

Давным-давно, более 13 млрд лет назад, по прошествии нескольких миллионов лет после образования Вселенной, в космосе, лишенном каменистых планет и жизни, ярко горели первые звезды [24] . Они появились, когда гравитация стала стягивать огромные вращающиеся облака водорода и гелия – атомов, образовавшихся при Большом взрыве, – в еще б'oльшие раскаленные сферы.

Звезды – это двигатели химической эволюции. Под действием невообразимых температуры и давления в звездных недрах водород «слипался» в гелий, а три ядра гелия – в углерод. Конечно, это медленный процесс, но у звезд много времени. И таким образом углерод постепенно накапливался, чтобы в конечном итоге стать четвертым по распространенности элементом во Вселенной – на каждую тысячу атомов водорода приходится порядка пяти атомов углерода.

24

Возраст первого поколения звезд остается предметом споров, но наблюдения за дальними галактиками, свет которых начал распространяться менее чем через миллиард лет после Большого взрыва, указывают на то, что большие звезды образовались в космической истории довольно рано. См.: D. P. Marrone et al., “Galaxy Growth in a Massive Halo in the First Billion Years of Cosmic History,” Nature 553 (2018): 51–54.

Первые несколько миллионов лет космической истории б'oльшая часть этих все пополняющихся запасов звездного углерода оставалась запертой глубоко в недрах звезд. Некоторые его ядра стали ядерным топливом, соединяясь с ядрами гелия и образуя еще более тяжелые элементы: кислород – податель жизни, кремний – строительный материал для каменистых планет; железо – основа индустриального развития. Спустя миллионы лет, когда турбулентные потоки звездной конвекции

вынесли эти глубинные продукты нуклеогенеза на светящуюся поверхность каждой из звезд, некоторые атомы углерода были унесены мощными звездными ветрами, выталкивающими атомы углерода вовне, в межзвездное пространство, при взаимодействии с сильными магнитными полями звезд. Эти-то образовавшиеся в недрах звезд атомы, которые улетели в космическое пространство, и дали начало настоящей углеродизации космоса.

Самое обильное «засеивание» космоса углеродом происходит, когда умирают массивные звезды; происходящие при этом бурные процессы высвобождают огромное количество вещества [25] . При взрывах сверхновых огромные звезды буквально рассыпаются в пространстве. Но как звезда может взорваться? Ответ на этот вопрос нужно искать в непрерывном противостоянии огромной силы тяготения, которая тянет звездную массу внутрь, и мощью ядерного синтеза, выталкивающего эту массу наружу.

25

Роль столкновения нейтронных звезд в образовании приблизительно половины элементов Периодической таблицы описана в работе: D. Kasen et al., “Origin of the Heavy Elements in Binary Neutron-Star Mergers from a Gravitational-Wave Event,” Nature 551 (2017): 80–84.

Давайте подумаем о будущем нашего Солнца, в котором через 4 млрд лет или около того весь водород превратится в гелий. Постепенно водород в раскаленном ядре Солнца полностью израсходуется, а концентрация гелия возрастет. Тогда начнется выгорание гелия. Возможно, на полмиллиарда лет ядерные силы, вызванные выгоранием гелия в недрах Солнца, возьмут верх над силой тяготения. Эти изменения приведут к не очень приятным последствиям для землян. Солнце раздуется более чем в 100 раз по сравнению со своим нынешним размером, превратившись в красный гигант, который разрастется дальше орбиты несчастного, поглощенного Солнцем Меркурия, за орбиту обреченной Венеры и, наконец, подойдет достаточно близко к орбите Земли, заполнив собой дневное небо. Когда ярко-красная поверхность Солнца приблизится к Земле, наш общий дом сгорит и превратится в безжизненную золу.

Учитывая скромные размеры Солнца, углерод окажется конечным продуктом ядерных процессов. Когда запасы гелия иссякнут и ядерные реакции прекратятся, гравитация все-таки выиграет 10 000 000 000-летнюю войну. Солнце сожмется, превратившись в белый карлик – насыщенную углеродом звезду размером с Землю, с диаметром менее сотой доли нынешнего. В процессе медленного охлаждения и сжатия звезды б'oльшая часть запасов только что образовавшегося углерода будет заблокирована в ней навсегда, «подобно бриллианту в небе» [26] .

26

Возможно, это аллюзия на хит Рианны 2012 г. “Diamonds”, рефреном которого идет строчка “We’re like diamonds in the sky”. – Прим. ред.

У звезд крупнее Солнца судьба иная, поскольку их внутреннего давления и температуры достаточно, чтобы часть ядер углерода-12, соединившись с альфа-частицами, образовала более тяжелые элементы – кислород-16, неон-20, магний-24 и другие. При этом происходит каскад ядерных реакций, и каждое преобразование добавляет звезде энергии, обогащает ее новыми химическими элементами и противостоит непреклонной силе тяготения. Реакции происходят одна за другой все быстрее и быстрее, пока звезда не примется за образование железа-56. Последние стадии синтеза происходят за секунды. У всех элементов в цепочке, заканчивающейся железом, каждое новое ядро стабильнее предыдущего, а каждая ядерная реакция высвобождает энергию и поддерживает горение звезды, как будто подбрасывая дров в ревущий огонь. Но железо-56 – это конечный ядерный пепел. Что бы вы ни пытались сделать с ядром железа-56 – добавить или забрать протон, добавить или забрать нейтрон, – любая реакция с этим элементом потребует энергии. Когда ядро звезды превращается в железо, направленный вовне напор ядерных реакций прекращается почти мгновенно и гравитация так же быстро берет над ним верх.

Главное последствие этого звездного «выключения» – разрушительный взрыв, в котором участвует вся звездная масса. Весь оставшийся водород, гелий, углерод и остальные элементы затягиваются внутрь со всевозрастающей скоростью, достигающей существенных долей скорости света, пока не взорвутся. В этих хаотических условиях, когда температура и давление вырастают до значений, невиданных со времен Большого взрыва, атомные ядра интенсивно сталкиваются и сливаются, их протоны и нейтроны буквально перемешиваются, образуя все более тяжелые комбинации. Так в конечном счете возникает более половины элементов Периодической таблицы. То, что мы наблюдаем как взрыв сверхновой, на самом деле представляет собой разрушительный распад всей этой звездной массы – беспорядочной смеси множества новых элементов, разлетающихся в пространстве.

Поделиться:
Популярные книги

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5