Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
Шрифт:
Может показаться, что это щедро. Вполне возможно, что данного допущения с запасом хватит на спонтанное возникновение ДНК или РНК. Но этого и близко не достаточно для того, чтобы мы могли совершенно обойтись без накапливающего отбора в своих теориях. Шансы на формирование хорошо соответствующего своим целям организма, который может летать как стриж, или плавать как дельфин, или видеть как орел путем чистой удачи — одноступенчатого отбора, — неизмеримо меньше, чем единица к числу не то что планет, но атомов во всей Вселенной! Нет, сомневаться не приходится, в наших объяснениях живой природы нам никуда не деться от изрядной доли накапливающего отбора.
Но, хотя в своих теориях о происхождении жизни мы и имеем полное право распоряжаться огромным количеством везения — возможно, порядка единицы к 100 миллиардам миллиардов, — подозреваю, что на самом деле нам понадобится всего лишь крохотный кусочек от этой причитающейся нам порции. Зарождение жизни на отдельно взятой планете может быть событием действительно крайне маловероятным как с точки зрения нашей повседневной жизни, так и по меркам химической лаборатории и все же
Слово “спекулировать” имеет пренебрежительный оттенок, но в данном случае он совершенно неуместен. Ни на что иное, кроме спекуляций, мы просто не можем рассчитывать, ведь речь идет о событиях, которые имели место мало того что 4 млрд лет назад, так еще и в мире, радикально не похожем на наш. Например, в тогдашней атмосфере почти наверняка отсутствовал несвязанный кислород. Но, хотя химия мира могла измениться, законы химии остались прежними (на то они и законы), и современные химики знакомы с ними достаточно хорошо, чтобы позволить себе кое-какие компетентные спекуляции, правдоподобие которых будет подвергнуто строгой проверке на соответствие этим законам. Тут и речи нет о безудержных и безответственных спекуляциях, когда буйство фантазии ничем не ограничено, как это бывает с такими неубедительными средствами из области космической фантастики, как “гипердвигатели”, “деформаторы времени” и “двигатели на бесконечной невероятности”. Большинство возможных спекуляций, касающихся возникновения жизни, вступят в конфликт с законами химии и будут отринуты, даже если в полную силу использовать наш запасной статистический аргумент о количестве планет. Таким образом, осторожные, избирательные спекуляции могут оказаться полезным делом. Но, чтобы ими заниматься, необходимо быть химиком.
Я биолог, а не химик и во всей этой арифметике полагаюсь на химиков. У каждого из них есть своя излюбленная теория, и недостатка в этих теориях не наблюдается. Я мог бы попытаться беспристрастно изложить вам их все. Именно так следовало бы поступить, пиши я учебник для студентов. Но эта книга — не учебник. Основная мысль “Слепого часовщика” состоит в том, что для объяснения жизни, так же как и всех прочих явлений во Вселенной, нам нет необходимости предполагать наличие того, кто ее создал. Здесь мы выясняем, какой тип решений следует искать для того типа задач, что стоят перед нами. И я думаю, что для более наглядного ответа на этот вопрос лучше будет не рассматривать множество отдельных теорий, а сосредоточиться на одной из них, взяв ее в качестве примера такого решения, какое в принципе могло бы быть у нашей основной задачи о том, откуда берет начало накапливающий отбор.
Итак, какую же теорию мне взять в качестве показательного примера? В большинстве учебников явное предпочтение отдается семейству теорий об органическом “первичном бульоне”. По-видимому, до возникновения жизни земная атмосфера была похожа на атмосферу тех планет, которые и теперь безжизненны. В ней не было кислорода, зато водород и водяные пары имелись в изобилии, также там был углекислый газ, а еще, по всей вероятности, некоторое количество аммиака, метана и других простых органических газов. Химики знали, что в подобной бескислородной атмосфере возникают благодатные условия для спонтанного синтеза органических соединений, и предприняли попытку воссоздать в колбе миниатюрную модель той обстановки, что была на молодой Земле. Через такие колбы они пропускали разряды, имитирующие молнии, и ультрафиолетовые лучи, которые до появления экранирующего их защитного озонового слоя должны были быть намного интенсивнее, чем теперь. Результаты оказались захватывающими. В колбах самопроизвольно образовывались органические молекулы, в том числе и такие, которые обычно встречаются только в составе живых организмов. Ни ДНК, ни РНК там не появилось, однако строительные блоки для этих крупных молекул, называемые пуринами и пиримидинами, возникали. Обнаруживались там и аминокислоты — строительные блоки для белков. Недостающее звено подобных теорий — все то же начало процесса репликации. Пока что не удавалось заставить эти строительные блоки объединиться в самокопирующуюся цепочку вроде молекулы РНК [6] . Возможно, в один прекрасный день удастся.
6
Химикам не так давно все же удалось синтезировать из простых веществ, наверняка присутствовавших на древней планете, нуклеотиды, составляющие РНК (Powner et al., 2009). — Прим. науч. ред.
Но
Согласно точке зрения Кернса-Смита, аппарат ДНК/белок появился относительно недавно — возможно, не ранее 3 млрд лет назад. До этого же накапливающий отбор в течение многих поколений имел дело с совершенно иными реплицирующимися объектами. Однажды возникнув, ДНК проявила себя настолько более эффективным репликатором, оказывающим настолько большее влияние на копирование самой себя, что исходная репликативная система, породившая ее, осталась за бортом и была забыта. В соответствии с таким взглядом современный аппарат воспроизводства ДНК — это выскочка, недавний узурпатор, перехвативший роль основного репликатора у более раннего и топорного предшественника. Возможно, такая “смена власти” происходила даже многократно, но самый первый механизм репликации должен был быть достаточно прост, чтобы возникнуть тем путем, которому я дал название “одноступенчатый отбор”.
Химики разделяют свой предмет на две основные отрасли: органическую и неорганическую. Органическая химия — это химия одного элемента, углерода. Неорганическая химия — все остальное. Углерод действительно важен и заслуживает того, чтобы ему была посвящена особая отрасль химии, отчасти потому, что на нем основывается химия всего живого, а отчасти потому, что те же самые свойства углерода, которые делают его пригодным для жизни, делают его востребованным и в промышленности, например в производстве пластмасс. Главное свойство атомов углерода, делающее их столь подходящими как для жизни, так и для промышленного синтеза, — это их способность образовывать, объединяясь друг с другом, очень крупные молекулы с неограниченным многообразием форм. Еще один элемент, обладающий похожими свойствами, — это кремний. И хотя химия нашей нынешней земной жизни вся насквозь углеродная, в других частях Вселенной дело, возможно, обстоит и не так. Возможно, не всегда оно обстояло так и на нашей планете. Кернс-Смит считает, что первоначально жизнь на Земле опиралась на самовоспроизводящиеся неорганические кристаллы типа силикатов. Если он прав, то органические репликаторы — а в конечном итоге ДНК — должны были затем получить эту роль по наследству или же узурпировать ее.
Он приводит и некоторые аргументы в пользу принципиальной возможности подобного “перехвата”. Например, каменная арка — это устойчивая структура, способная даже безо всякого цемента простоять в течение многих лет. Создать сложную структуру эволюционным путем — это все равно что построить арку без скрепляющего раствора, когда вам не разрешено класть более одного камня за раз. Наивному уму такая задача покажется невыполнимой. Арка стоит, коль скоро все камни до единого на месте, но промежуточные стадии будут неустойчивы. Построить арку, однако, довольно просто — при условии что можно не только добавлять камни, но и удалять их. Для начала следует свалить камни в плотную груду и строить арку поверх этого прочного основания. Затем, когда вся арка будет сооружена, а необходимый для ее устойчивости замковый камень водружен на ее вершину, осторожно уберем камни-подпорки, и, если нам немножко повезет, арка останется стоять. Стоунхендж кажется необъяснимым до тех пор, пока мы не сообразим, что его строители использовали какие-то подмости или, возможно, земляные пандусы, которых там больше нет. Мы видим лишь конечный результат, а об исчезнувших вспомогательных конструкциях вынуждены догадываться. Точно так же ДНК и белок — это две опоры устойчивой и изящной арки, которая готова существовать сколь угодно долго, коль скоро ее детали уже оказались все одновременно на своих местах. Трудно себе представить, как она могла возникнуть постепенно, без каких-то заранее подготовленных подмостей, которые затем полностью исчезли. Сами эти подмости тоже наверняка возникли в ходе накапливающего отбора, о природе которого мы можем теперь только гадать. Но он непременно должен был иметь дело с некими реплицирующимися объектами, обладавшими властью над собственным будущим.
Кернс-Смит предполагает, что первоначальные репликаторы представляли собой неорганические кристаллы наподобие тех, что встречаются в различных глинах и илах. Кристалл — это просто-напросто большое упорядоченное объединение атомов или молекул в твердом агрегатном состоянии. Благодаря своим свойствам, которые мы можем представить себе как их “форму”, атомы и небольшие молекулы имеют тенденцию укладываться друг относительно друга строго определенным образом. Они ведут себя, как если бы им “хотелось” встать в общий ряд так, а не иначе, но эта иллюзия воли — не более чем случайное следствие их свойств. Их “любимым” способом пристраиваться друг к другу диктуется и форма кристалла в целом. Это означает, что даже в таком крупном кристалле, как алмаз, каждая отдельно взятая часть организована в точности так же, как и любая другая, не считая возможных трещин. Если бы мы смогли уменьшиться до атомных габаритов, то увидели бы там бесконечные ряды атомов, уходящие за горизонт ровными линиями, — длинные коридоры постоянно повторяющейся геометрической формы.