Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
Шрифт:
Глава 7
Созидательная эволюция
Иногда люди думают, что естественный отбор — сила исключительно отрицательная, способная только устранять уродцев и неудачников, но никак не создавать сложность, красоту и эффективность конструкции. Разве он не удаляет просто-напросто то, что уже есть, и разве не должен процесс истинно созидательный и привносить что-то? В какой-то мере ответом на этот вопрос может послужить скульптура. К куску мрамора ничего добавлено не было. Скульптор только удалил лишнее, но прекрасная статуя тем не менее возникла. Однако эта метафора не слишком удачна, поскольку некоторые могут сразу же ухватиться за ее неверную часть — тот факт, что скульптор является разумным создателем, — и не заметить существенную: что скульптор действует отнимая, а не добавляя. Но и на этом далеко не уедешь. Естественный отбор способен только отнимать, однако мутации могут и кое-что добавить. Действуя сообща в геологическом времени, естественный отбор и мутации могут порой давать начало
Вначале расскажу, в чем суть “коадаптации геномов”. Любой ген оказывает свое конкретное действие исключительно в силу того, что существует некая структура, над которой можно поработать. Чтобы ген мог повлиять на формирование электрических соединений в мозге, нужен в первую очередь сам мозг и электрические соединения в нем. Но мозга с электрическими соединениями не появится, если не будет всего развивающегося зародыша в целом. А всего развивающегося зародыша не будет без огромной последовательности событий, происходящих на химическом и клеточном уровнях под влиянием уймы других генов, а также уймы других, негенетических факторов. Производимые генами эффекты не являются неотъемлемыми свойствами самих генов. Они являются свойствами уже существующих эмбриологических процессов, детали которых гены могут видоизменять, действуя в определенных частях зародыша и на определенных стадиях его развития. В простейшем виде мы могли это наблюдать на примере компьютерных биоморф.
Все эмбриональное развитие — это в каком-то смысле совместное предприятие, в котором принимают участие тысячи генов. Благодаря общему сотрудничеству генов развивающегося организма образуется целый зародыш. И вот ключ к пониманию того, каким образом осуществляется подобное сотрудничество. При естественном отборе гены всегда отбираются по своей способности процветать в той среде, в которой находятся. Под средой мы зачастую имеем в виду окружающий мир — хищников и климат. Но, возможно, с точки зрения каждого отдельно взятого гена самой важной частью его окружения являются все другие гены, с которыми ему приходится встречаться. А где же они ему “встречаются”? Обычно в клетках последовательного ряда сменяющих друг друга организмов, внутри которых он оказывается. Каждый ген отбирается по своей способности успешно сотрудничать с совокупностью тех других генов, что могут с высокой вероятностью повстречаться ему в организмах.
На самом деле рабочее окружение каждого конкретного гена формируется не только той случайной компанией, которой довелось ненадолго собраться в клетках какого-либо отдельно взятого организма. Оно представляет собой — по крайней мере у видов с половым размножением — набор всех генов в популяции скрещивающихся друг с другом особей, так называемый генофонд. В каждый конкретный момент каждая отдельно взятая копия гена, то есть особое сочетание атомов, непременно находится в какой-то определенной клетке какой-то определенной особи. Однако этот набор атомов, которым является любая данная копия гена, не слишком нам интересен. Продолжительность его жизни измеряется всего-навсего месяцами. Как мы уже знаем, долговечный ген, представляющий собой единицу эволюции, — это не конкретная физическая структура, а заархивированная текстовая информация, копируемая и передающаяся из поколения в поколение. Его бытие рассредоточено. Он широко распределен в пространстве между различными индивидуумами и широко распределен во времени между множеством поколений. Про любой ген, который рассеян таким образом, можно сказать, что он “встретился” с другим геном, если они оба оказались в одном и том же организме. В своем рассредоточенном существовании и в своем шествии сквозь геологические эпохи ген может “рассчитывать” встретить в других телах множество других генов. Ге н будет успешным, если он окажется способен процветать в разнообразных окружениях, создаваемых этими другими генами, с которыми он может повстречаться внутри множества различных организмов. “Процветание” в такой среде на поверку оказывается равносильным “сотрудничеству” с остальными генами. Наиболее явственно это можно увидеть на примере биохимических путей обмена веществ.
Биохимическими путями называются ряды химических соединений, соответствующих последовательным этапам некоего полезного процесса — к примеру, высвобождения энергии или синтеза какого-нибудь ценного вещества. Для каждого шага на этом пути требуется свой фермент — одна из ранее упоминавшихся крупных молекул, работающих подобно производственным установкам химического завода. Иногда к одной и той же полезной цели ведут целых два альтернативных биохимических пути, а то и больше. Но, хотя итоговым результатом обоих таких альтернативных путей является один и тот же нужный продукт, промежуточные стадии, ведущие к нему, различаются. Отправные точки обычно тоже разные. Любой из двух путей годится для достижения цели, и какой именно будет использован — не принципиально. Любому конкретному животному важно лишь не прибегать сразу к обоим, ибо ни к чему, кроме химической путаницы и неэффективности, это не приведет.
Допустим, для пути 1, ведущего к образованию нужного соединения Г, требуется последовательное действие ферментов А1, Б1 и В1, а для пути 2, который ведет к достижению того же желанного результата, необходимы ферменты А2, Б2 и В2. Каждый фермент создается особым геном. Таким образом, сборочный конвейер для пути 1 возникнет у вида только в том случае, если гены, кодирующие ферменты А1, Б1 и В1, будут коэволюционировать все вместе. А для возникновения альтернативного конвейера, осуществляющего путь 2, виду понадобится, чтобы вместе эволюционировали гены, кодирующие А2, Б2 и В2. Выбор между этими двумя коэволюциями не делается заранее и осознанно.
В реальности все несколько сложнее, но основную мысль, я думаю, вы ухватили: одна из важнейших характеристик благоприятного или неблагоприятного “климата” для гена — это те другие гены, которые уже являются многочисленными в популяции и потому могут с большой вероятностью оказаться с ним внутри одного организма. А поскольку то же самое, очевидно, верно и для любого из этих “других” генов, значит, мы будем наблюдать, как команды генов эволюционируют в направлении совместного решения проблем. Сами по себе гены не эволюционируют: они либо выживают, либо не выживают в генофонде, и все. Эволюционирует только их “команда”. Другие команды могли бы справляться с теми же задачами не хуже, а то и лучше. Но, как только одна из команд начинает преобладать в генофонде вида, она тем самым автоматически получает преимущество. Команде, оказавшейся в меньшинстве, будет непросто переломить ситуацию, даже если в конечном итоге эта команда оказалась бы более эффективной. Команда, оказавшаяся в большинстве, автоматически приобретает устойчивость к вытеснению, просто в силу того, что она в большинстве. Отсюда не следует, что эта команда теперь никогда не будет смещена. Тогда эволюция забуксовала бы. Но это, несомненно, говорит о том, что определенная инерция тут неизбежна.
Очевидно, что рассуждения такого рода применимы не только к биохимии. Ровно то же самое можно было бы сказать и по поводу группировок взаимно совместимых генов, формирующих различные части глаз, ушей, носов, ходильных ног и все сотрудничающие друг с другом органы животного. Для генов, делающих зубы подходящими для пережевывания мяса, благоприятным будет тот “климат”, в котором преобладают гены, делающие кишечник приспособленным для переваривания мясной пищи. И соответственно, генам, делающим зубы подходящими для перетирания растительной пищи, отбор будет больше благоприятствовать там, где преобладают гены, делающие кишечник пригодным для ее переваривания. В обоих случаях верно и обратное. Итак, вся команда “плотоядных” генов имеет обыкновение эволюционировать как единое целое. То же самое касается и команды “травоядных” генов. Действительно, в каком-то смысле можно сказать, что большинство работающих генов организма сотрудничают друг с другом, будто настоящая команда. Связано это с тем, что каждый ген (точнее, его предковые копии) составлял в течение всего эволюционного времени часть той среды, в которой все остальные гены подвергались действию естественного отбора. Если мы зададимся вопросом, почему предки львов перешли на мясную диету, а предки антилоп — на вегетарианскую, то ответ вполне может быть таким, что изначально это было случайностью. Случайностью в том смысле, что предки львов могли оказаться теми, кто перейдет к травоядному образу жизни, а предки антилоп — теми, кто перейдет к хищничеству. Но, как только в ряду поколений начинает сколачиваться команда генов для обработки мяса, а не травы, этот процесс становится необратимым и подталкивает сам себя. А если в другом ряду поколений начинает сколачиваться команда генов для переработки растительной пищи, то и этот процесс становится необратимым и подталкивает сам себя, но только в другом направлении.
Одним из самых важных процессов, происходивших на ранних этапах эволюции, было увеличение числа генов, участвующих в подобных совместных предприятиях. Например, у бактерий намного меньше генов, чем у растений и у животных. Такое возрастание их количества могло осуществляться благодаря различным механизмам дупликации генов. Давайте вспомним о том, что ген — это всего лишь последовательность кодирующих символов, словно файл на жестком диске компьютера. Гены могут быть скопированы на различные участки хромосомы, точно так же как файлы — на разные участки диска. На жестком диске моего компьютера, содержащем и эту главу, находится в настоящий момент, формально говоря, всего три файла. Под “формально” я имею в виду то, что операционная система компьютера сообщает мне, что файлов всего три. Я могу попросить ее прочесть один из них, и тогда она выдаст мне линейную последовательность букв, в том числе и те буквы, что вы сейчас перед собой видите. Казалось бы, все аккуратно и упорядоченно. В действительности же текст расположен на диске как угодно, но только не упорядоченно и не аккуратно. Вы убедитесь в этом, если отбросите строгую дисциплину, которую вам навязывает операционная система вашего компьютера, и самостоятельно напишете программы, позволяющие расшифровать, что же на самом деле записано в каждом из блоков памяти диска. Оказывается, фрагменты всех трех моих файлов беспорядочно разбросаны, перемешаны друг с другом и с фрагментами старых, неиспользуемых файлов, которые я давным-давно стер и про которые уже успел забыть. Любой конкретный фрагмент может быть обнаружен — как полностью, в одном и том же виде, так и с незначительными отличиями — в полудюжине самых разных мест на диске.
Эта тема интересна нам и заслуживает того, чтобы мы отвлеклись на нее, поскольку тут можно провести хорошую аналогию с генетикой. Приказывая компьютеру удалить файл, вы думаете, что он вам повинуется. Однако на самом деле он не ликвидирует текст этого файла как таковой. Он удаляет только все ссылки на него. Это как если бы библиотекарь, которому поручили уничтожить “Любовника леди Чаттерлей”, просто убрал соответствующую карточку из каталога, а книгу оставил стоять на полке. Для компьютера действовать именно таким образом рациональнее всего, ведь, как только будут убраны все идентификаторы “удаленного” файла, пространство, занятое им, автоматически станет доступно для записи новых файлов. Специально заполнять это пространство пробелами было бы ненужной тратой времени. Старый файл не исчезнет окончательно до тех пор, пока все занимаемое им пространство не будет заполнено новыми файлами.