Слепой часовщик
Шрифт:
Очевидно, что эти рассуждения не ограничены биохимией. Мы могли проделать то же самое для групп генов, совместно, строящих различные части глаз, ушей, носов, конечностей — всех сотрудничающих части тела животного. Гены, строящие зубы, пригодные для пережёвывания мяса, скорее всего будут одобряться в «климате» доминирующих генов, строящих пищеварительную систему, пригодную для переваривания мяса. И наоборот — гены, создающие зубы для перетирания растений, скорее всего будут одобрены в климате доминирующих генов, создающих пищеварительную систему, ориентированную на переваривание растительной пищи. Иные гены будут, соответственно, не одобрены в обоих случаях. Команды «генов мясоедения» склонны развиваться вместе, как и команды «генов-вегетарианцев». Действительно, есть смысл говорить, что большинство работающих генов в теле сотрудничает друг с другом как одна команда, потому что каждый из них (точнее — прародительская копия каждого из них) в ходе длительной эволюции были частью той окружающей среды, в которой естественный отбор работал над другими генами. Выбор же прародителями львов питания мясом, а прародителями антилоп — питания травой, мог быть изначально случайным. Случайность в том смысле, что могли существовать
Одним из главных процессов, происходивших в ранней эволюции живых организмов, было увеличение количества генов, участвующих в таких кооперациях. У бактерий гораздо меньше генов, чем у животных и растений. Возможно, это увеличение происходило посредством тех или иных форм дублирования генов. Вспомним, что ген — это только строчка закодированных символов, подобная файлу на компьютерном диске; стало быть гены могут быть скопированы в различные части хромосом — точно так же, как файлы могут быть скопированы в различные части диска. На диске моего компьютера, где хранится эта глава, формально имеются только три файла. Говоря «формально», я имею в виду, что об этих трёх файлах сообщает мне операционная система компьютера. Я могу попросить её, чтобы она прочитала один из этих трёх файлов, и они предстанут передо мной в виде одномерного массива алфавитно-цифровых символов, включая те, что вы сейчас читаете. Все они выглядят очень аккуратно упорядоченными. Фактически же, расположение текста на диске совсем не аккуратно и не упорядоченно. Это можно увидеть, если уйти от дисциплины официальной операционной системы компьютера и написать свою собственную программу, расшифровывающую фактическое содержимое каждого сектора диска. И окажется, что фрагменты каждого из трёх моих файлов прерывисты и чередуются — как друг с другом, так и с фрагментами старых, мёртвых файлов, которые я давно стёр и забыл. Любой из этих фрагментов может содержать, почти дословно — ту же самую (или с незначительными отличиями), информацию в полудюжине разных мест на диске.
Причина такого положения дел интересна и заслуживает отступления, так как имеет хорошие генетические параллели. Когда вы просите компьютер удалить файл, то вам кажется, что он слушается вас. Но фактически он не стирает текст этого файла. Он лишь стирает все указатели на него. Ну, как бы если библиотекарю приказали уничтожить книгу «Любовник Леди Чаттерлей», а он просто разорвал бы карточку в картотеке, оставив саму книгу на полке. Для компьютера это совершенно экономичный способ действий, так как пространство, прежде занятое «удалённым» файлом после удаления указателей становится автоматически доступным для новых файлов. Фактическое заполнение этого места пробелами были бы напрасной тратой времени. Сам старый файл не будет окончательно потерян, пока всё пространство, им занимавшееся, не будет использовано для хранения новых файлов. Но это переиспользование пространства происходит постепенно. Размер новых файлов, как правило, не равен в точности размеру старого. Когда компьютер пытается записать новый файл на диск, то он ищет первый доступный фрагмент пространства, записывает туда максимально возможный фрагмент нового файла, затем, если нужно, ищет другой доступный фрагмент пространства, записывает ещё фрагмент файла, и так далее, пока весь файл не будет записан на диск. У человека возникает иллюзия, что файл является цельным, упорядоченным массивом — но это только потому, что компьютер очень аккуратно поддерживает записи, «указывающие» на адреса всех этих разбросанных фрагментов. Подобные «указатели» используются в «Нью-Йорк Таймс», когда там указывается, что «продолжение на странице 94». Так много копий какого-то фрагмента текста находятся на диске потому, что, если, подобно всем моим главам, текст редактировался и перередактировался много раз, каждое редактирование заканчивалось новой записью на диск (почти) того же самого текста. Сохраняться может совершенно тот же самый файл. Но как мы видели, фактически текст будет многократно раздроблен по всему доступному пространству на диске. Таким образом, множество копий данного фрагмента текста могут находиться на всей поверхности диска, и их тем больше, чем диск старее и чаще использовался.
На сегодня ДНК-операционная система вида очень и очень стара, и есть признаки того, что она, в долгосрочной перспективе ведёт себя в чём-то подобно компьютеру с его дисковыми файлами. Частично этими признаками являются интересные феномены «интронов» и «экзонов». В прошлом десятилетии было обнаружено, что любой отдельный ген — в смысле единого, читаемого слитно фрагмента ДНК-текста, хранится не в одном месте. Если прочитать фактические символы кода, как они расположены на хромосоме (то есть если сделать нечто подобное уходу от дисциплины «операционной системы»), то окажется, что осмысленные фрагменты, называемые экзонами, разделены фрагментами «бессмыслицы», называемые интронами. Любой «ген», в функциональном его смысле, фактически раздроблен на последовательность фрагментов (экзонов) разделённых бессмысленными интронами. Словно каждый экзон, заканчивается ссылочным указателем, говорящим, что «продолжение на странице 94». А весь ген оказывается составленным из серии экзонов, которые оказываются объединёнными вместе только тогда, когда они в своё время будут прочитаны «официальной» операционной системой, транслирующей их в белки.
Ещё одним свидетельством является тот факт, что хромосомы замусорены старым генетическим текстом, который больше не используется, но который всё ещё имеет распознаваемый смысл. Эти разбросанные «генетические окаменелости» компьютерному программисту до жути напоминают схему распределения обрывков текста на поверхности старого диска, активно использовавшегося для редактирования текста. У некоторых животных большая доля от общего числа генов никогда не читается. Эти гены являются или полной бессмыслицей, или устаревшими «ископаемыми генами».
Но изредка
У людей на различных хромосомах есть восемь отдельных генов, называемых генами глобина (он, среди прочего, используется для создания гемоглобина). Представляется несомненным, что все они изначально были скопированы с единственного предкового гена глобина. Примерно 1100 миллионов лет назад, прародительский ген глобина сдублировался, образовав два гена. Мы можем датировать этот случай по независимым свидетельствам, опираясь на обычную скорость эволюции глобинов (см. главы 5 и 11). Один из этих двух генов, порождённый этим изначальным дублированием, стал прародителем всех генов, вырабатывающих гемоглобин у позвоночных. Другой — стал прародителем всех генов, производящих миоглобины, родственное семейство белков, работающих в мышцах. Последующие дублирования породили так называемые альфа, бета, гамма, дельта, эпсилон и зета глобины. Интересно, что из всех генов глобина мы можем построить полное генеалогическое древо и даже проставить даты всех точек дивергенции (дельта и бета глобин разошлись, например, примерно 40 миллионов лет назад, эпсилон и гамма-глобин — 100 миллионов лет назад). Все эти восемь глобинов, порождённые этими древними ветвлениями у наших отдалённых прародителей, по прежнему находятся внутри каждого из нас. Они разошлись в различные части хромосом нашего прародителя, и мы наследуем их в наших различных хромосомах. Каждая из этих молекул разделяет одно тело со своими далёкими молекулярными кузенами. Без сомнения, что такое дублирование случалось за геологическое время многократно и на всех хромосомах. В этом важном отношении реальная жизнь сложнее биоморфов третьей главы. У всех их было только девять генов. Они эволюционировали посредством изменений в этих девяти генах, никогда не увеличивая их число до десяти. Даже у реальных животных такие дублирования настолько редки, что моё определение вида, как общности с одной и той же системой «адресации» ДНК остаётся в силе.
Дублирование внутри вида — не единственный способ увеличения числа сотрудничающих генов в ходе эволюции. Бывают ещё более редкие, но всё же возможные и важные случаи случайного внедрения гена другого вида, даже чрезвычайно далёкого. Например, в корнях растений семейства гороха имеются гемоглобины. Они не встречаются ни в одном из других семейств растений, и можно практически уверенно полагать, что они — тем или иным путём, проникли в семейство гороха благодаря перекрёстной инфекции с животными, причём посредниками, возможно, выступали вирусы.
Особенно важный случай этого рода, согласно всё более и более одобряемой теории американского биолога Линн Маргулис, имел место при происхождении так называемых эукариотических клеток. Эукариотические клетки — это клетки всех живых существ, кроме бактерий [15] . Живой мир радикально разделён на бактерий и всех остальных. Мы с вами — часть «всего остального», вместе называемого эукариотами. Мы отличаемся от бактерий главным образом тем, что наши клетки содержат в себе маленькие обособленные миниклетки. Среди последних — ядро, в котором размещаются хромосомы; крошечные, похожие на бомбы объекты, называемые митохондриями (с которыми мы мимоходом познакомились на рисунке 1), заполненные причудливо свернутыми мембранами; и, в (эукариотических) клетках растений — хлоропласты. Митохондрии и хлоропласты обладают своей собственной ДНК, которая копируется и размножается совершенно независимо от главной ДНК в хромосомах ядра. Все митохондрии в вас происходят от маленькой популяции митохондрий, которые вы получили от своей матери в её яйцеклетке. Спермии слишком малы, чтобы содержать митохондрии, поэтому митохондрии наследуются исключительно по женской линии, а мужские тела для воспроизводства митохондрий — тупик. Кстати, из этого следует, что мы можем использовать митохондрии, чтобы проследить наших предков строго по женской линии.
15
И сине-зелёных водорослей — А.П.
Теория Маргулис гласит, что митохондрии, хлоропласты, а также некоторые другие структуры внутри клетки, происходят от бактерий. Эукариотическая клетка сформировалась, возможно, 2 миллиарда лет назад, когда несколько разновидностей бактерий объединили свои усилия во имя выгоды, извлекаемой каждым участником от остальных членов этой кооперации. По прошествии эпох, они стали настолько взаимоинтегрированной единицей, что стали эукариотический клеткой, в которой уже почти невозможно обнаружить тот факт (если это действительно факт), что когда-то они были отдельными бактериями.