Советсткие ученые. Очерки и воспоминания
Шрифт:
Кто из нас не дает в юности горячих, искренних клятв? Но как редко мы вспоминаем о них потом. Валентин Глушко не забыл. Он действительно, как обещал Циолковскому, посвятил свою жизнь великому делу — космическому полету.
Деятельные люди и в детстве деятельные люди. Они не рассуждают: вот подрасту и покажу себя. Они сразу начинают себя показывать. Глушко отлично учится. Работает в обсерватории в юношеском кружке при Одесском отделении Русского общества любителей мироведения (РОЛМ), ведет наблюдения Марса, Венеры, Юпитера. Организует дома химическую лабораторию, ставит опыты со взрывчатыми веществами (вещь опасная и в список заслуг юного Валентина может не входить), собирает книги о взрывчатых веществах. Строит модель космической ракеты по своим чертежам. Берет уроки живописи. Учится музыке сначала в Одесской консерватории, потом в Одесской музыкальной академии. Пишет и публикует заметки по проблемам межпланетных полетов в газетах и журналах.
«В 1924 году окончил среднюю школу, — вспоминает Валентин Петрович. —
В очень трудные, холодные, голодные, пулями озвученные годы, без станций юных техников, без дворцов пионеров он в постоянном физическом и умственном движении, в детской, юношеской, а потом и во взрослой работе, сам задает он себе высокий темп жизни, активно расширяет горизонты своих знаний, интеллекта и сил. Сам делает себя. И когда летом 1925 года Валентин приезжает в Ленинград и поступает в университет, он уже твердо знает, зачем он приехал, что он будет делать дальше. Он знакомится с Я. Перельманом, читает книги К. Циолковского, Г. Оберта, Р. Эсно–Пельтри, Р. Годдарда, В. Гомана, Ю. Кондратюка. В журнале «Наука и техника» за 35 лет до полета первой в мире орбитальной станции «Салют» восемнадцатилетний Глушко публикует статью «Станции вне Земли» и, предугадывая программу будущих полетов таких станций, пишет, что «не только астрономия, но и метеорология обогатятся ценнейшими вкладами и широчайшими горизонтами новых исследований. В таком же положении окажутся все естественные науки». Удивительно ли, что первую теоретическую работу выпускника Ленинградского университета «Металл как взрывчатое вещество» одобряют ученые–эксперты, а Тихомиров приглашает Валентина Петровича в ГДЛ?
Недавно опубликованные свои воспоминания В. П. Глушко назвал «Путь в ракетной технике». Этот долгий путь не всегда был легким и праздничным. Встречались на нем и рытвины неудач, и ухабы разочарований. Но это был всегда прямой путь. С того ясного, чистого весеннего утра, когда приехал он в Лесное под Ленинградом, где «папа Иоффе» отвел для него помещение в своей высоковольтной лаборатории, с того самого майского утра 1929 года Валентин Петрович Глушко занимался всегда одним делом — ракетными двигателями. Думаю, что сегодня академик Глушко — крупнейший в мире авторитет в этой области ракетной техники.
Ну а тогда он совсем не был похож на академика.
Худенький, аккуратный молодой человек в галстуке, в отглаженной рубашке с воротничком, уголки которой по моде того времени стягивались металлической запонкой, скромный, тихий, воспитанный, обращает на себя внимание окружающих невероятным упорством и настойчивостью в работе. Тихомиров видел в ЭРД самоцель, Глушко — средство достижения цели. А цель — космический полет. Расчеты показывают, да и в опытах он видит это: электрический ракетный двигатель имеет тягу ограниченную, вывести в космос пилотируемый корабль он не сможет. ЭРД вторичен, это двигатель невесомости, но ведь в невесомость надо сначала попасть. Когда тебе 21 год и ты сам придумал нечто такое, что до тебя никто не додумался сделать, и это «нечто» принято и одобрено учеными авторитетами, и тебе дали средства, людей, помещение, оборудование с тем, чтобы ты свою придумку усовершенствовал, очень нелегко сказать себе: «Нет, мой ЭРД — не главное сейчас. Пожалуй, я начал с конца. Космической технике нужно другое». Это было нелегко сказать, но Валентин сказал себе это. «Мне стало ясно, — вспоминает академик Глушко, — что при всей перспективности электрореактивный двигатель понадобится нам лишь на следующем этапе освоения космоса, а чтобы проникнуть в космос, необходимы жидкостные реактивные двигатели, о которых так много писал Константин Эдуардович Циолковский. С начала 1930 года основное внимание я сосредоточил на разработке именно этих моторов…»
Все тогда было для него в новинку, а научить некому. Циолковский о ЖРД писал, но ни расчетов тепловых процессов, ни чертежей, ни тем более конструкций у него нет. Фридрих Цандер — убежденный сторонник ЖРД, и подход у него к ним инженерный, конкретный. Но он слишком увлечен своей идеей дожигания в двигателях металла конструкций, а проблема эта по конструкторскому своему оформлению невероятно трудная, и упорство Цандера невольно тормозит его работу. Валентин понимает, что проблема ЖРД — это не какая–то одна неведомая крепость техники, которую можно взять приступом, лобовой атакой. Скорее это целая оборонительная линия. Общая проблема разбивается на ряд отдельных проблем, решая которые последовательно, можно в конце концов построить жидкостный ракетный мотор — как тогда называли ЖРД.
Начать хотя бы с системы подачи топлива. Чем выше давление в камере, тем выше скорость истечения, тем эффективнее ракетный двигатель. Но давление окислителя и горючего перед входом в камеру сгорания должно быть еще выше, иначе его не удастся туда впрыснуть — это ясно. Как создать это давление подачи? Сначала это делали аккумуляторы давления. Ставили баллон со сжатым газом, открывали кран, газ выходил и выдавливал жидкость из бака в камеру сгорания. Вместо баллона можно поставить пороховую шашку — топливо будут выдавливать газы, которые образуются при горении пороха. Возникает заколдованный круг: чем совершеннее и мощнее двигатель, тем выше давление подачи, тем прочнее, а значит, тяжелее должны быть баки, чтобы его выдержать, тем тяжелее вся ракета. Но чем тяжелее ракета, тем более совершенный и мощный нужен ей двигатель. До какого–то предела аккумуляторы способны решить проблему, а дальше нужны насосы. Топливо под маленьким давлением (а следовательно, из облегченных баков) будет поступать в насосы, которые и создадут высокое давление подачи. И прочными надо будет сделать только трубопроводы от насоса к камере сгорания, это куда проще. Значит, проблема в том, чтобы определить границы применения той или иной системы подачи. «Изыскание наилучших способов введения в камеру сгорания реактивного мотора компонентов топлива, горючего и окислителя является одним из основных вопросов, решение которых стоит в непосредственной связи с возможностью использования в технике движущихся реактивных аппаратов», — писал Глушко в 1931 году.
Но, пожалуй, самый крепкий орешек в загадках ЖРД — охлаждение двигателя. Чем выше температура в камере сгорания, тем опять–таки эффективнее и мощнее работает ЖРД. Но высокой температуры не выдерживают металлы конструкции. Герман Оберт и другие конструкторы разбавляли горючее, снижали его теплотворную способность, «портили», но ведь это не выход. Вместо металла делали в наиболее напряженных по температуре частях камеры сгорания вставки из тугоплавкого графита и карборунда. Но и они не выдерживали температуры выше 1 600 градусов, а хотелось довести ее до 2–3 тысяч, а то и выше. Карбиды сгорали, поглощая кислород окислителя. Глушко отказался от них уже в 1930 году. Он понимает, что «по температуре горения и теплонапряженности камеры сгорания ракетные двигатели не имеют себе равных», но он еще надеется на тугоплавкие окиси циркония — они плавятся при температуре 2950 градусов—и окись магния, температура плавления которого чуть ниже. Инженерная интуиция в конце концов подсказывает: никакие материалы не выдержат. Надо идти совсем другой дорогой. Надо «прибегнуть, — как он пишет, — к динамическому охлаждению» двигателя, отводить от него тепло, как отводит вода тепло автомобильного мотора. Но вода здесь не годится. «Выгодно охлаждать ракетный мотор самим жидким топливом не только с целью уменьшения теплопотерь, но и чтобы не увеличивать мертвый вес ракетного летательного аппарата посторонней жидкостью», — он понял это уже в 1931 году. Тогда он еще не представляет всей сложности стоящей перед ним задачи, не знает, что всю жизнь предстоит бороться ему с этими чудовищными потоками тепла, что возникнет в этой борьбе целая отрасль в науке о теплопередачах — теория охлаждения жидкостных ракетных двигателей — и что, судя по всему, конца этой борьбе, несмотря на все техническое могущество нашего космического века, видно никогда не будет.
Глушко конструирует двигатели, испытывает их, прожигает, взрывает, иногда заходит в тупик, быстро понимает это, возвращается и идет дальше, шаг за шагом идет к совершенству. Он верит, что оно достижимо в технических отчетах, где всякий намек на эмоции и патетику издавна почитался чуть ли не признаком дурного тона, он называет ЖРД «двигателями передовой техники». Второй сектор ГДЛ, которым руководит Валентин Петрович, создает целую серию «ОРМ» — опытных ракетных моторов. Первый — совсем примитивный, с цилиндрическим соплом, с водяным охлаждением, с тягой всего в 20 килограммов. Но уже в «ОРМ-3» и «ОРМ-5» двигатель охлаждался одним из компонентов топлива. Происходил классический процесс диалектики: переход количества в качество. Газодинамическая лаборатория становится ведущей организацией в стране по исследованиям в области ЖРД.
Объехавший полмира и повидав разные чудеса природы и человеческого труда, я свидетельствую, что немногие из них по яростной силе своей, блеску, затмевающему солнце, реву, заглушающему гром, по непревзойденной мощи, обгоняющей гигантские водопады, немногие сравниться могут со зрелищем работающего космического ракетного двигателя. Он ближе к стихии, чем к машине. Представьте себе сильный взрыв, но взрыв не мгновенный, а неимоверно, словно в каком–то кошмарном сне, растянутый во времени, кажущийся нескончаемым, а в действительности длящийся секунды, минуты, десятки минут, взрыв, укрощенный, обузданный, пойманный в металл камеры сгорания, подвластный человеческой воле. Он страшит, завораживает, восхищает: порожденный мыслью, он сам рождает бурю чувств. Огненная работа эта прекрасна, и я понимаю людей, отдавших ей всю свою страсть, всю свою жизнь.
Пройдут годы, и ГДЛ превратится в ОКБ — особое конструкторское бюро, где из опытных ракетных моторов вырастут ракетные двигатели «РД-107», установленные на первой ступени ракеты–носителя «Восток». Сергей Павлович Королев писал незадолго перед смертью: «Как радостно вспомнить сейчас маленькие «ОРМ», так прочно заложившие основы советского двигателестроения». Ведь недаром цепь кратеров на Луне протяженностью 1 100 километров названа в честь ГДЛ, а ряд лунных кратеров — именами сотрудников ГДЛ — ОКБ: Малый, Петров, Чернышев, Жирицкий, Артамонов, Гаврилов, Фирсов, Алехин, Грачев, Мезенцев. Двигатели, созданные в ОКБ, выводили на орбиту все советские пилотируемые корабли, многие лунные и межпланетные автоматы и спутники Земли.