Современная наука и философия: Пути фундаментальных исследований и перспективы философии
Шрифт:
В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований.
В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации.
Для XX века характерна
В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности.
Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц.
Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе.
Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу.
Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии».
И действительно, разве не атомная энергия дала человеку новую энергетическую базу производства и разве не ее открытие явилось вместе с тем открытием еще более мощной силы – силы ассоциированной науки? Разве не атомная энергия внушила человечеству самые радужные надежды и самые тяжелые опасения?
А космические исследования, выход человека за пределы земной атмосферы – разве это великое событие мировой истории не характеризует наше столетие? А кибернетика? Ведь это она существенно влияет на характер труда, производства. Среди всех эпитетов нашего века, характеризующих специфику его науки, «век биологии» кажется особенно показательным. В середине столетия физиология, химия, физика, математика объединились, чтобы раскрыть загадку живого вещества и жизни. Если макроскопическое решение этой загадки в XIX веке позволило говорить о «веке Дарвина», то ее микроскопическое решение – картина молекулы живого вещества и закодированной в ней наследственности организма – дает право назвать наше столетие веком молекулярной биологии и ее неисчерпаемых результатов в генетике, медицине и т. д.
Но каждый из претендентов на обобщающее название века все же кажется недостаточным. И не потому, что наряду с атомной энергетикой выросли кибернетика, молекулярная биология, космические исследования. Перечисленных названий недостаточно потому, что между всеми отмеченными в них тенденциями существует глубокая связь и по исходным теоретическим позициям и экспериментальным данным, и по стилю научного мышления, и по экономическому и культурному эффекту. Забегая вперед, ограничимся кратким замечанием об общем эффекте науки XX века, характерном для всех отраслей производства, для культуры и стиля мышления. Этот эффект – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки.
Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс.
В «Рассуждениях о науках и искусствах» Ж. Ж. Руссо вспоминал о пришедшей из Египта в Древнюю Грецию легенде о боге, создавшем науку. Этот бог, говорит легенда, был врагом человеческого спокойствия. Различие между наукой XX и XIX веков состоит в том, что старая наука не так явно и не так непрерывно «беспокоила» человечество, не так явно демонстрировала враждебную человеческому спокойствию тенденцию своего легендарного создателя. Динамизм науки в XX веке отчетливо виден, если сравнить то, что она получила от предыдущего века, и то, что она передаст следующему.
К концу XIX века сложилось довольно устойчивое представление о мире. В его основе лежала классическая механика, законы Ньютона, которые казались непоколебимыми. На них наслаивались законы физики. Они были несводимы к механике. В термодинамике не обращали внимания на поведение отдельной молекулы, а интересовались лишь средними скоростями молекул, т. е. температурами. Было известно, что тепло переходит от тел с более высокой температурой к телам с менее высокой температурой и, таким образом, температура выравнивается. Поэтому в теории тепла существовало понятие необратимого процесса: с течением времени в изолированной системе необратимо возрастает равномерность распределения тепла, то, что называется энтропией. Этим теория тепла явным образом отличается от механики, где все процессы могут идти и в обратном направлении. Отличаясь от механики, термодинамика, изучающая поведение больших множеств молекул, не могла в своей физической расшифровке полностью оторваться от кинетической теории, рассматривающей движение и соударение отдельных молекул, при котором, согласно общему убеждению, они целиком подчиняются законам механики, законам Ньютона.