Чтение онлайн

на главную

Жанры

Шрифт:

Д. К. Максвелл в молодости

В 1856 г. Максвелл принял назначение в Абердинский университет на кафедру натурфилософии Маришаль-колледжа. Абердин — шотландский порт на Северном море. Ни в одном университете Англии отдельной кафедры физики ещё не было, но «в шотландских университетах,— как отмечал Столетов,— физика несколько ранее получила право гражданства». Кроме того, Максвеллу хотелось быть ближе к отцу, здоровье которого все ухудшалось. Но сэр Джон не дожил ни до переезда сына, ни до своего 60-летия. Это было самое сильное потрясение в жизни Максвелла.

Его лекционная нагрузка в Абердине была небольшой. Помимо чтения лекций, много времени отнимали заботы о доставшемся ему в наследство Гленлэре. За преподавание Максвелл взялся горячо, однако нельзя сказать, что он преуспевал: ни в молодости, ни позже он не был блестящим лектором. Своему приятелю, читавшему проповеди у них в деревне, Максвелл советовал: «Почему бы тебе не дать им этого поменьше?» Но сам таким путём никогда не шёл. Он был обаятельным человеком, его лекции были сдобрены особым юмором, в котором

была и эксцентричность, и гротеск, и непрямая, с намёками и игрой слов, манера выражать свои мысли. Но едва дело доходило до существа предмета, речь Максвелла становилась точной, ясной, совершенно простой и лишённой эмоций. Таким был и стиль его писаний. Однако в его лекциях содержалось столько сложных вещей и до таких глубин любил он докапываться, что многих этим отпугивал. А экзаменовал он строго. В общем, ему трудно было поддерживать мир с теми, кто не возвышался над средним уровнем. Зато для тех, кто любил трудности и не боялся работы мысли — лучшего учителя не было.

Весной 1857 г. Максвелл решился наконец заявить о себе Фарадею, своему кумиру. К статье «О фарадеевых силовых линиях», которую он направлял ему, было приложено почтительное письмо. Не избалованный вниманием, маститый учёный был глубоко тронут. «Я не благодарю Вас за то, что Вы сообщили о силовых линиях,— писал он,— ибо Вы это сделали в интересах философской правды и из любви к ней. Но... Ваша работа приятна мне и даёт мне большую поддержку...» Фарадея поразила сила таланта 25-летнего своего последователя и то, какой силой была в его руках математика. С этого началась их переписка, так много давшая им обоим.

А следующей весной Максвелл сообщил своей тётке, мисс Кей, что собирается жениться. «Не бойтесь,— шутил он,— она не математик... Но она, разумеется, не станет и помехой для моей математики». Он не ошибся. Напротив того, Кетрин Мери Дьюар, дочь директора Маришаль-колледжа, ставшая вскоре миссис Максвелл, помогала ему в работе, пока позволяло здоровье. Мемуаристы отмечают, впрочем, что «миссис Максвелл была женщиной трудной»...

Когда Кембриджский университет объявил конкурс на работу об устойчивости колец Сатурна, Максвеллу захотелось попытать счастья. К астрономии у него была давняя любовь. В Гленлэре сохранилась своеобразная и явно домашнего изготовления игрушка: карта звёздного неба, разнимающаяся на созвездия. На месте звёзд (в соответствии с их звёздной величиной) были вырезаны разного диаметра отверстия. Если позади ставили свечу, игрушка оживала. Кроме того, Джемс с отцом сделали солнечные часы, по которым (и это надолго стало обычаем) в доме регулировались все другие часы.

Работа об устойчивости колец Сатурна заняла у Максвелла почти два года (1857—1859). Кольца Сатурна были открыты Галилеем в начале XVII в. и представляли собой удивительную загадку природы: планета казалась окружённой тремя сплошными концентрическими кольцами. Лаплас доказал, что они не могут быть твёрдыми. «Не жидкие ли они?» — предположил Максвелл. Но в атом случае, как показал математический анализ, они разделились бы на капли. Следовательно, подобная структура может быть устойчивой только в том случае, если она состоит из роя несвязанных между собой метеоритов. Королевский астроном Эри назвал эссе Максвелла, изложенное на 68 страницах, одним из замечательнейших приложений математики. (Теоретическое решение Максвелла было со временем подтверждено спектроскопическими исследованиями Белопольского и Килфа.) Молодой учёный, которому была присуждена премия Адамса, «становится лидером математических физиков».

В науке, как и в жизни, все взаимосвязано. Исследование колец Сатурна пробудило интерес Максвелла к кинетической теории газов. В этой области переплетались такие важнейшие идеи века, как механическая теория теплоты, принцип сохранения энергии, атомистика. С момента своего возникновения кинетическая теория газов опиралась на представления о дискретном строении тел и о хаотическом движении дискретных частиц, составляющих газообразные тела. Углубление в высокую теорию не притупило живого интереса Максвелла к насущным проблемам техники. В промышленности тогда все шире применялся пар, росло число паровых машин, но неизвестно было, каким законам он подчиняется в их цилиндрах. А с этим, в частности, была связана проблема коэффициента полезного действия. Максвелл называет своих прямых предшественников в деле изучения газовых законов, это — Д. Бернулли, Джоуль, Крёниг и Р. Клаузиус. Но до Максвелла, для упрощения математических выкладок, полагали, что частицы (молекулы) газа движутся равномерно, прямолинейно и что их скорости одинаковы. Это допущение Максвелл отверг, как нереальное. Столкновение молекул друг с другом придаёт им различную скорость. В случае газа, изолированного от воздействия внешних сил, его молекулы распределены по скоростям группами. Невозможно вычислить скорость отдельных молекул газа, но вполне возможно вычислить скорость группы молекул. Как это сделать? Он воспользовался методом теории вероятностей и ввёл в кинетическую теорию статистический подход, который потом получил название — распределение скоростей газовых молекул («распределение Максвелла») и явился важным этапом в развитии кинетической теории газов. Однако тогда не имелось фактов, доказывающих правильность выводов Максвелла, да и сами представления о молекулах и законах их движения были весьма гипотетическими. Поэтому учёный обращается к своему излюбленному методу механических, или кинетических моделей. Одной из его первых кинетических моделей строения газа было представление о молекулах как об упругих телах конечных размеров (что не расходилось с общепринятыми тогда положениями). Затем Максвелл стал рассматривать молекулы как точечные центры, отталкивающиеся друг от друга пропорционально 5-й степени расстояния... Прочитав максвелловское «Объяснение динамической теории газов», Клаузиус сказал: «Вот как нужно писать по теории газов!» А Столетов позже констатировал: «В работах Клаузиуса и Максвелла кинетическая теория газов получила высокую степень развития». Впоследствии русский физик Н. Н. Пирогов, сын великого хирурга, распространил закон распределения скоростей на многоатомные газы.

Иногда о Максвелле говорят как об учёном, строившем свои теории при помощи карандаша и бумаги. Это неверно. Никого так не раздражали «холодные и пустые абстракции», как Максвелла. Его главная черта (что проявилось уже в первых работах) — органическое сочетание конкретного и абстрактного, умение мыслить наглядными

образами при решении самой отвлечённой задачи, и отсюда — его стремление к геометрическим методам и кинематическим схемам. В этом он — типичное дитя своего времени, когда одни конструкции быстро сменялись другими, когда конструктивно-кинематические модели находились в центре внимания инженеров и учёных, когда дух классической механики пронизывал не только технику, но и физику. И это не случайно: механика, всесторонне и фундаментально к тому времени разработанная, была в полном смысле слова точной наукой. Поэтому физики и стремились свести к ней все физические проблемы, полагая, что, в конечном счёте, все может быть объяснено механически. Это хорошо выразил В. Томсон (будущий лорд Кельвин): «...подлинный смысл вопроса — понимаем ли мы данную физическую проблему, определяется тем, можем ли мы сконструировать соответствующую механическую модель?» Максвелл с детства любил механизмы и машины; ставши учёным, он увидел в них ещё и механические модели, демонстрировавшие определённые принципы и законы. Естественно поэтому и обратное — его стремление представить вновь найденные принципы и законы в виде механических моделей и схем. Он никогда не ограничивался одной моделью, а давал их, щедро, легко и как бы импровизируя, по несколько, иногда — десятки: выбирайте, мол, ту, которая, по-вашему, наиболее близка к действительной сути явления. Они бывали и примитивны, бывали и грубоваты, но надо помнить, что модели Максвелла — это лишь варианты творческой мысли, наглядное её отображение; они, предупреждает учёный, «должны пониматься как иллюстративные, а не объясняющие». И в этом — принципиально отличное от других физиков его отношение к механике: он искал в ней лишь внешнее сходство, аналогию, а не разгадку природы изучаемого явления. (Кстати сказать, метод моделей и аналогий получил широкое распространение и в современной науке.)

За четыре абердинских года Максвелл с наилучшей стороны зарекомендовал себя в учёном мире, было самое время перебираться в столицу. В 1860 г. он простился с Абердином, чтобы занять место профессора натурфилософии в Лондонском университете, в Кингс-колледже. Кроме физики, он должен был читать и астрономию. Здесь он наконец встретился с Фарадеем, жившим в здании Королевского института. Фарадей был стар и болен. Он давно жаловался на катастрофическую потерю памяти: «Моя голова так слаба, что я не знаю, правильно ли я пишу слова». Это почти лишало его возможности работать. Однажды после лекции, заметив своего молодого друга в плотном кольце людей, Фарадей воскликнул: «Ха, Максвелл! Вы не можете выбраться?! Если кто и может пробраться сквозь толпу — так это вы, такой специалист по молекулярному движению!..» Фарадей полюбил Максвелла и с интересом следил за его работой. Максвелл завязал знакомства и с другими физиками. «Работа — хорошая вещь, и чтение — тоже,— говорил он,— но лучше всего — друзья!» Он умел распределять время таким образом, что знакомства, встречи, дружеские беседы и развлечения не мешали ему работать. Он говорил: «Человек, вкладывающий в работу всю свою душу, всегда успевает больше...» Он достиг такого состояния интеллекта, когда, по его словам, «даже случайные наши мысли начинают бежать по научному руслу». Работал он легко, как бы играя. И даже когда он действительно играл, развлекался, то и в такие минуты умел думать о вещах серьёзных. В лаборатории он был очень искусным, быстрым; экспериментируя, имел привычку негромко насвистывать.

Переезд в Лондон совпал ещё с одним успехом Максвелла-учёного: за исследования по восприятию цветов и по оптике ему была присуждена Румфордовская медаль Королевского общества. Максвеллу шёл тридцатый год, талант его был в полном расцвете. В мае 1861 г. на лекции в Королевском институте он продемонстрировал первую в мире цветную фотографию — бант из разноцветных лент на фоне чёрного бархата. Правда, в современном смысле это ещё не было цветной фотографией: цветное изображение давали, проецируясь на экран, три диапозитива (красный, зелёный, синий). Максвелл, признанный глава математической физики, становится «одним из главных авторитетов по цвету»; им опубликовано пять работ, относящихся к этой области (по физиологии цветового зрения, колориметрии, цветовой печати и цветной фотографии). Некоторые из них замечательны по тем экспериментальным приёмам, которые в них использованы. Навестивший несколько позже Максвелла Гельмгольц писал жене в Гейдельберг: «Был тёмный, дождливый день, но я все-таки поехал в Кенсингтон (район Лондона) к профессору Максвеллу. Он показал мне прекрасные приборы, относящиеся к учению о цветах,— области, в которой я сам ранее работал... Он пригласил для меня коллегу, страдающего цветовой слепотой, профессора Поля, над которым мы делали опыты». Максвелл потом скажет: «Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство...» Сам он, как, быть может, никто тогда, владел таким искусством. Лаборатории в его распоряжении, по существу, не было. Но он жил в окружении приборов, причём дома у него их было даже больше, чем в колледже; одни были изготовлены им самим, другие — по его указаниям. Приборы служили ему ещё и чем-то вроде игрушек: он придумывал забавные опыты, развлекался сам и развлекал других. С мыльными пузырями он манипулировал как заправский фокусник. Изучая смешение цветов, он часами выстаивал у окна, заглядывая в отверстие цветового ящика — соседи посчитали его за сумасшедшего. Работы по измерению вязкости газов он проводил в большой мансарде своего дома. Необходимо было поддерживать постоянную температуру; на плите, даже в жару, кипели чайники, из которых внутрь «лаборатории» непрерывно струился пар. Хрупкая миссис Максвелл действовала в качестве истопника.

Устойчивый интерес к практическим вопросам заставлял Максвелла продолжать работы по теории сооружений. Он, кроме того, деятельно участвовал, как член комиссии, в организации работ по определению единицы электрического сопротивления (эталона сопротивления) и по проверке закона Ома. В качестве материала для эталона был выбран сплав серебра и платины. Эта единица была названа омом. Измерениям Максвелл придавал огромное значение и даже в сугубо теоретических своих работах отводил большое место системам единиц, инструментам и методам измерений. Многие физики в точности измерений видели цель, конец работы, для Максвелла это было средство для достижения иной цели. «Я мог бы,— говорит он,— привести примеры из любой отрасли науки, показывающие, как работа над тщательными измерениями была вознаграждена открытиями новых областей исследования и развитием новых научных идей».

Поделиться:
Популярные книги

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Низший - Инфериор. Компиляция. Книги 1-19

Михайлов Дем Алексеевич
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Низший - Инфериор. Компиляция. Книги 1-19

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Кодекс Охотника. Книга XXII

Винокуров Юрий
22. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXII

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Не грози Дубровскому! Том 11

Панарин Антон
11. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том 11

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14