Стрелы Времени
Шрифт:
В силу этой тесной взаимосвязи между сопряженным и обратным векторами нетрудно увидеть, что при вычислении сопряженного произведения их порядок нужно поменять на противоположный так же, как и в случае с делением:
(v x w)* = w*x v*
Спроецировав на направление Будущее произведение вектора v и сопряженного
Проекция v x w* на Будущее = aA + bB + cC + dD = |v||w| cos (угол между v и w)
Величина, стоящая в правой части первого равенства, и представляющая собой сумму произведений четырех компонент (a, b, c, d) вектора v на соответствующие компоненты (A, B, C, D) вектора w, называется скалярным произведением векторов v и w. Как показывает второе равенство, скалярное произведение зависит только от длина векторов и угла между ними.
Любой поворот четырехмерного пространства можно описать парой фиксированных векторов g и h, причем для осуществления поворота заданный вектор нужно умножить слева на g, а затем поделить справа на h. Иначе говоря, поворот вектора выражается так:
v -> g x v / h
Так, поворот, меняющий местами Север и Юг, а также Будущее и Прошлое, оставляя неизменными все векторы, перпендикулярные этой четверке, можно описать с помощью пары g = Юг, h = Север. Как доказать, что эта операция действительно является поворотом? Во-первых, она, как легко убедиться, не меняет длину вектора v, поскольку |g| = |h| = |h– 1| = 1 и
|g x v / h| = |g||v||h– 1| = |v|
Кроме того, мы можем выяснить, как та же самая операция, примененная к двум векторам, влияет на угол между ними, применив ее к v x w*:
v -> g x v / h
w -> g x w / h
v x w* -> (g x v / h) x (g x w / h)* =
= g x v x h– 1 x (g x w x h– 1)* =
= g x v x h– 1 x h x w* x g– 1 =
= g x (v x w*) x g– 1
Поскольку g x Будущее/ g =
Все повороты, ограниченные тремя пространственными измерениями, можно описать как частный случай исходной формулы, положив в ней h = g:
v -> g x v / g
Например, повороту на 1800 в горизонтальной (Север-Восток) плоскости соответствует g = Верх.
Два других особых случая вращения достигаются при h = Будущее, то есть умножении слева на g:
v -> g x v
и g = Будущее, при котором поворот сводится к делению на h:
v -> v / h
Обе операции всегда осуществляют поворот сразу в двух ортогональных плоскостях – причем на один и тот же угол. Например, при умножении слева на Восток происходит поворот на 900 как в плоскости Будущее-Восток, так и в плоскости Север-Верх.
Рассмотрим поворот, который описывается величинами g и h, преобразующими векторы в соответствии со стандартной формулой:
v -> g x v / h
Существуют еще две разновидности геометрических объектов, которые описываются с помощью кватернионов, но при этом не являются векторами, поскольку при том же самом повороте подчиняются другим правилам преобразования:
l -> g x l
r -> h x r
Эти любопытные объекты называются «спинорами»: l – «левым», а r – «правым». В нашем мире математика спиноров не так проста, как в случае Ортогональной Вселенной, но обе математические системы, тем не менее, довольно похожи, а спиноры и в той, и в другой Вселенной играют ключевую роль при описании поведения некоторых фундаментальных частиц в процессе поворота.