Чтение онлайн

на главную - закладки

Жанры

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Шрифт:

Но бактерии-зерги не ограничиваются лишь обменом устойчивостью к антибиотикам. Некоторые бактерии встраивают в свой геном последовательности вирусов, чтобы научиться защищаться от них, — это лежит в основе недавно открытого механизма бактериального иммунитета, так называемой CRISPR-системы [117] , о которой мы поговорим подробнее при обсуждении методов генной инженерии в тринадцатой главе. В общих чертах: вирус бактериофаг впрыскивает свою ДНК в бактерию в надежде, что бактерия ее размножит, но хитрая бактерия вместо этого вырезает кусочек вирусной ДНК и встраивает его в свой геном, в специальное место, которое называется CRISPR-кассетой. После этого бактерия синтезирует небольшие РНК-фрагменты, комплементарные вирусной ДНК, а специальный белок использует их, чтобы при следующем визите вируса распознать его. Всякая

молекула ДНК, комплементарная РНК-фрагменту, подлежит уничтожению. По сути, бактерия создает базу данных «отпечатков пальцев» преступников, чтобы потом было легче их ловить.

117

Makarova K.S. et al.: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9(6):467–77.

Некоторые бактерии умеют генетически модифицировать не только себя, но и другие организмы. Агробактерия Agrobacterium tumefaciens живет повсеместно в почве. У нее есть специальная Ti-плазмида, а внутри плазмиды содержится особый участок, Т-ДНК, который агробактерия умеет встраивать в геномы растений. Речь идет не о передаче растению всей плазмиды целиком, а только о передаче короткого фрагмента. Бактерия прикрепляется к растительной клетке, и между ними образуется специальный канал, в формировании которого участвуют бактериальные белки. По этому каналу копия Т-ДНК в сопровождении ряда других белков переносится в цитоплазму растительной клетки. Бактериальные белки помогают Т-ДНК попасть в ядро, где она встраивается в геном растения, в какую-нибудь хромосому.

В дальнейшем эта вставка уже ничем не отличается от обычной наследственной информации растений. Когда ДНК растения удваивается, вставка удваивается вместе с ней. Когда клетка растения делится, вставка попадает в обе дочерние клетки. В ядре растительной клетки с генов, записанных на Т-ДНК, считывается РНК. В цитоплазме эта РНК служит матрицей для синтеза бактериальных белков, стимулирующих растительную клетку к активному делению и выработке питательных веществ, которыми питается бактерия. Почему-то эта форма генной инженерии никого не беспокоит с точки зрения возможных последствий, хотя бактерии занимаются ею исключительно в своих корыстных целях. Неужели даже после многочисленных эпидемий (чума, холера и так далее) человечество продолжает доверять бактериям больше, чем ученым?

В 2015 году интернациональная группа исследователей из Бельгии, США, Перу и Китая опубликовала в научном журнале PNAS результаты генетического анализа 304 образцов батата (сладкого картофеля) [118] . В анализ включили 291 образец культивируемого батата из регионов Южной и Центральной Америки, Африки, Азии и Океании, 9 образцов дикого сладкого картофеля и 4 образца родственных растений. Ученые обнаружили во всех исследованных образцах культивируемого батата не менее одной трансгенной бактериальной вставки, отсутствующей у диких родственников растений. В некоторых сортах батата они обнаружили даже несколько подобных вставок! По крайней мере одна трансгенная вставка появилась у общего предка культивируемых сортов сладкого картофеля предположительно несколько тысяч лет назад, причем перенесенные гены не были генетическим мусором — они были активны! Выходит, что все это время люди ели трансгенные растения с генами бактерий и даже не подозревали об этом!

118

Kyndt T. et al.: The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci U S A 2015.

Ранее трансгенные вставки бактериальных генов были обнаружены в геноме льнянки [119] . Но примеры горизонтального переноса генов не ограничиваются растениями. Например, в геноме жука Callosobruchus chinensis присутствует 30 % генов бактерии вольбахии [120] , то есть в этом случае речь идет о переносе не одного или нескольких генов, а сотен! Существуют функциональные гены, перенесенные в геномы различных животных, в том числе и в геном человека [121] . Эти и многие другие примеры говорят о том, что современным генным инженерам еще очень далеко до

самой природы в их попытках изменить наследственную информацию живых организмов. Природа работает в куда больших масштабах.

119

Matveeva T.V. et al.: Horizontal gene transfer from genus agrobacterium to the plant linaria in nature. Mol Plant Microbe Interact 2012, 25(12):1542–51.

120

Nikoh N. et al.: Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 2008, 18(2):272–80.

121

Crisp A. et al.: Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 2015, 16(1):50.

Весь процесс эволюции жизни на нашей планете от одноклеточных организмов до динозавров и далее до человека и других современных видов, длившийся несколько миллиардов лет, является процессом изменения генов. Вся история селекции, осознанного или неосознанного отбора людьми наиболее вкусных и хорошо растущих растений, — это история изменения генов культурных сортов. Генная инженерия отличается от селекции только тем, что это более точный и быстрый процесс с меньшим количеством нежелательных побочных эффектов. Но чтобы разрушить последние сомнения, давайте рассмотрим более старые биотехнологии, которые использовались и используются в селекции, но, в отличие от генной инженерии, тревоги ни у кого не вызывают.

Среди множества методов селекции используется создание полиплоидных организмов. Полиплоидные организмы — это организмы, у которых количество хромосом больше обычного. Например, не две копии каждой хромосомы, а четыре или восемь. У многих животных такая полиплоидия приводит к нарушению жизнеспособности, зато у растений это позволяет — в ряде случаев — получать более урожайные сорта. Для того чтобы получить полиплоидные растения, часто используют вещество колхицин — страшный яд, разрушающий структуры из микротрубочек, которые в норме связывают хромосомы и растаскивают их по разным полюсам делящейся клетки. После обработки колхицином клетка сможет удвоить свою ДНК, но не сможет разнести хромосомы к разным полюсам, поэтому не поделится и останется с удвоенным количеством хромосом. Таким образом, она будет увеличивать количество своей ДНК несколько раз, прежде чем ей позволят поделиться.

Для того чтобы ускорить появление новых признаков, селекционеры также прибегают к различным методам, стимулирующим появление мутаций. Для этого порой используют радиационный или химический мутагенез. Естественно, в результате этих слабо контролируемых процессов получается масса непригодных мутантов, но иногда появляются растения с улучшенными качествами, и именно их отбирают и культивируют. При этом селекционеры не задаются вопросом, что именно изменилось в ДНК селекционного сорта, что позволило ему стать питательнее или крупнее, из-за чего у него уменьшились или пропали косточки. Априори любые изменения в наследственной информации признаются безопасными, хотя это необязательно так.

Сравнить генную инженерию и селекцию нам поможет аналогия: вы пытаетесь купить утюг в интернет-магазине. Допустим, вы знаете, какой именно товар вам нужен, поэтому можете просто взять и купить его — это генная инженерия. А можете сидеть и до посинения покупать случайные товары. Иногда вам привезут пылесос, иногда соковыжималку, иногда новый унитаз. Это случайные мутации. Унитаз — это, может, и неплохо, но унитазом рубашку не погладить. С сотой или с тысячной попытки, возможно, вам все-таки повезет, и привезут что-то отдаленно похожее на утюг. Например, сковородку. Тогда вы радостно позвоните в магазин и попросите впредь присылать предметы, похожие на предыдущий заказ. Вам, конечно, уже не будут присылать унитазы, а будут слать другие сковородки, кастрюли и, если повезет, утюги.

Конечно, первый утюг будет не той марки, но и это уже прогресс! Вы снова позвоните в магазин, поблагодарите их и попросите присылать предметы похожей формы. Теперь вам будут слать только утюги. Ну и в конце концов вы все-таки получите именно тот утюг, который хотели, и, возможно, вам даже не придется перебирать весь ассортимент магазина. Сейчас мы описали селекцию. Результат будет один и тот же, но сразу заказать утюг, согласитесь, проще. Ну и во втором случае у вас еще останется куча ненужного хлама, унитазов, тостеров, штучек для закручивания усов и грабли, на которые вы однажды наступите и сломаете себе нос.

Поделиться:
Популярные книги

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Стрелок

Астахов Евгений Евгеньевич
5. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Стрелок

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Проклятый Лекарь V

Скабер Артемий
5. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь V

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Всплеск в тишине

Распопов Дмитрий Викторович
5. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Всплеск в тишине

Начальник милиции

Дамиров Рафаэль
1. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2