Танец жизни. Новая наука о том, как клетка становится человеком
Шрифт:
Как мы должны относиться ко всем этим существам, от эмбриоидов до эмбрионоподобных моделей, с учетом современных этических и правовых аспектов в разных юрисдикциях? Следует ли, с точки зрения закона, обращаться с модельными эмбрионами как с человеческими, сейчас или в будущем? Что, если получится сконструировать эмбрионоподобные модели, развивающиеся до более зрелого состояния? К ним нельзя применять четырнадцатидневный лимит, поскольку их время развития измеряется по другим часам. Как подчеркнули мои коллеги в комментарии к статье в Nature, существенным для решения этих вопросов является прозрачность и эффективное взаимодействие с общественностью [23].
Нет никаких сомнений, что рождение первой здоровой
Глава 10
Новая эра синтетической биологии
Новая наука о том, как клетка становится человеком, уже оказывает на нас свое воздействие, будь то разработка новых методов лечения бесплодия, повышающих вероятность зачатия, или новых тестов и терапевтических подходов, а также многое другое — от профилактики развития врожденных дефектов до регенеративной медицины, побуждающей клетки танцевать под новую мелодию.
Точно так же, как танец организован в пространстве и времени, имеет определенный порядок шагов, направление передвижений и соответствует паттернам акцентов, так и клетки развивающегося эмбриона, по результатам исследований моей и других команд, руководствуются фундаментальными процессами, позволяющими эмбриону самоорганизовываться и создавать нас. И хотя много еще предстоит исследовать, сведения о клеточных и молекулярных процессах в раннем эмбрионе уже имеют существенное влияние.
Новая область регенеративной медицины опирается на данные о том, как стволовые клетки превращаются в ткани и органы. Пока моя команда фокусировалась на танце первой сотни (или около того) клеток развивающегося эмбриона и выясняла базовые принципы, направляющие этот танец, другие ученые выяснили принципы его дальнейшего превращения в плод, когда у зародыша начинают проступать черты ребенка. В клеточном танце взрослой жизни в пять тысяч раз больше участников, чем людей на нашей планете, и это без учета миллиардов клеток, сошедших с пути вместе с плацентой или в результате апоптоза. Сегодня мы можем наблюдать танец жизни (но не манипулировать им) и легко визуализировать его коллективные клеточные миграции.
Один из таких примеров — интерактивный 3D-атлас эмбрионального развития, охватывающий период со второй недели (когда эмбрион меньше полумиллиметра в поперечнике) до двух месяцев (когда он уже три сантиметра и явно похож на плод). Трехмерный атлас эмбриологии человека, разработанный Амстердамским медицинским центром (доступный онлайн по ссылке www.3dembryoatlas.com), ведет Бернадетт де Баккер из Амстердамского университета [1]. Чтобы изучить развитие органов и тканей, научной команде пришлось проанализировать электронно-микроскопические снимки примерно пятнадцати тысяч окрашенных срезов тканей из коллекции Института Карнеги, о которой мы уже говорили
В первые два месяца эмбрион растет экспоненциально. Его объем ежедневно увеличивается на 25% и на шестидесятый день достигает примерно 2800 кубических миллиметров, что эквивалентно половине чайной ложки [2].
Выяснилось, что стандартные учебники эмбриологии содержат ошибки. Нет никакого «восхождения почек». Гонады (формирующие яичники и тестикулы) не опускаются, как считалось ранее, а укорачиваются относительно растущих позвонков. Также обнаружены несоответствия в описании развития артерий.
Как показывает атлас, некоторые органы у эмбриона человека развиваются гораздо раньше, чем у эмбриона курицы или мыши, а некоторые — позже, и это очередное напоминание о том, что нельзя переносить на людей результаты экспериментов с животными, например в плане воздействия лекарств и токсинов. Атлас является прекрасным примером оценки развития путем анализа редкого человеческого биоматериала и серьезным напоминанием о том, как мало мы знаем о собственном эмбриогенезе. Чем больше сведений мы получим, тем легче будем начинать и формировать танец жизни.
Креативная биология
Последние разработки в лабораториях всего мира предвещают новую эру креативной биологии. Мы можем манипулировать идентичностью клеток на всем протяжении их развития, используя факторы, которые решают клеточную судьбу. Мы даже можем обратить ее вспять с помощью так называемых факторов Яманаки, названных в честь их первооткрывателя Синъи Яманаки, который разделил Нобелевскую премию с моим наставником Джоном Гёрдоном. Эти факторы, а также другие, открытые позже, могут превратить зрелые клетки обратно в эмбриональные, вернув им потенциальную способность развиваться во многие другие типы клеток, что сулит нам огромные возможности (об этом позже).
Еще одна влиятельная технология представлена новым поколением методов геномного редактирования, которые гораздо точнее прежних генетических манипуляций, придуманных еще в начале 1970-х [3]. Это чудесный нож[21] генетики, и сочетая его с секвенированием ДНК и РНК (которым я регулярно пользуюсь), можно проводить высокоточные генетические операции, будь то исправление мутаций, ведущих к развитию заболеваний, или перенаправление клеток на новый путь развития.
Можно манипулировать генами, совершенно их не трогая, а просто вызывая эпигенетические изменения, которые регулируют их использование (экспрессию) в клетках. И разумеется, я отношусь к тем ученым, которые занимаются культивированием человеческих эмбрионов (хотя большинство моих подопечных — мышиные эмбрионы), позволяя им расти и развиваться благодаря многочисленным, эволюционировавшим вслед за ЭКО, методам репродуктивной медицины.
Совместив все эти технологии, мы вступим в новую эру, где сможем манипулировать клетками так же искусно, как гончар — глиной. Сегодня ученые приступили к разработке модельных систем (органоидов), чтобы установить механизмы роста органов и тестировать лекарственные препараты. Уже есть клеточные модели талассемии, синдрома Марфана, мышечной дистрофии, болезни Хангтинтона и др. Можно также взять Т-клетки, рабочие лошадки иммунной системы, и вооружить их на борьбу с раком [4]. И, как я уже объясняла в предыдущей главе, мы разработали модель развития раннего постимплантационного мышиного эмбриона на основе стволовых клеток и теперь пытаемся расширить метод до применения стволовых клеток человека, чтобы разобраться в собственном раннем эмбриональном развитии, о котором до сих пор мало что известно.