Чтение онлайн

на главную

Жанры

Тайны образования нефти и горючих газов
Шрифт:

Это связано со многими причинами. Во-первых, в природе слишком много "любителей" энергии, заключенной как в захороненном органическом веществе, так и в любом зерне, состоящем из органического вещества. Во-вторых, так же как и растения для своего роста нуждаются в определенных благоприятных условиях, достаточной температуре, соответствующей плотности включающего грунта, обеспечивающей возможность прорастания семян, так и преобразование органического вещества в сторону нефти может происходить лишь при определенных благоприятных условиях, в первую очередь температурных и др.

Более того, если зерна растений в процессе эволюции приобрели защитные приспособления в виде достаточно прочной непроницаемой для микроорганизмов и инертной для разных химических реагентов оболочки, то обрывки и кусочки органического вещества такой защитной оболочки, как правило, не имеют, хотя если в породу попадают

те же зерна, пыльца, споры, то они в начальный период менее подвержены действию различных неблагоприятных условий.

Как отмечалось выше, при доступе кислорода происходит окисление органического вещества с образованием преимущественно углекислоты и воды. Этому процессу способствует жизнедеятельность многих микроорганизмов. Поэтому на поверхности земли, а также на дне водоемов в грунтах, хорошо промываемых водой (крупнозернистых песчаных, галечниковых и т.д.), происходит окисление органического вещества. Нередко вода не только приносит кислород, но и выносит продукты окисления, благодаря чему процесс может развиваться почти до полного разложения органического вещества. Исключения могут составлять крупные обрывки растительной ткани, семена, споры и пыльца растений,

нередко сохраняющиеся в песках и даже галечниках. В наиболее распространенных осадках - илах, глинистых илах, накапливающихся в спокойных водах бухт, заливов, озер, болот, стариц рек, доступ кислорода, как правило, затруднен, и поэтому нет условий для полного окисления содержащегося в них органического вещества. В таких осадках развиваются микроорганизмы, которые "набрасываются" в первую очередь на легко-разрушаемые органические соединения - белки, углеводы и др. При этом образуется много углекислого газа, воды, метана и незначительное количество жидких и твердых углеводородов. Эти углеводороды обнаружены в современных осадках почти всех морей, океанов, озер, стариц рек и т. д. О широком образовании метана в болотах свидетельствует и его второе название - болотный газ.

В указанный биогенный этап захороненное в осадках органическое вещество так сильно преобразуется, что и по составу, и по физико-химическим свойствам, и по морфологии, и другим признакам становится абсолютно непохожим на то исходное вещество, которое захоронялось в осадках: в результате потери легко гидролизуемых компонентов в нем остаются устойчивые и синтезируются сложные и также устойчивые соединения.

Это органическое вещество состоит из трех групп соединений, которые дифференцируют по растворимости в различных растворителях. Значительную часть этого вещества составляют соединения, растворимые в едком калии, которые называются гуминовыми кислотами. В несколько меньшем количестве содержится не растворимое в органических растворителях вещество, именуемое в зарубежной литературе керогеном. В небольших количествах присутствуют растворимые в бензоле, хлороформе и других органических растворителях компоненты - битумы, или, как их теперь называют, битумоиды, в составе которых определены жидкие и твердые углеводороды всех трех групп. На всех стадиях изменения в осадках и в заключенном в них органическом веществе всегда содержатся в разных состояниях (свободном, сорбированном, в закрытых порах) газообразные компоненты, среди которых нередко преобладает метан, присутствуют этан и другие газообразные углеводороды.

По мере отложения все новых и новых порций осадков затрудняется и почти прекращается обмен веществами с придонным слоем воды, что приводит к гибели микроорганизмов вследствие отравления их продуктами своей жизнедеятельности. Намечается новый этап, обусловленный повышением температуры, происходящим из-за увеличения глубины залегания (см. главу III). Температура в осадках может также повышаться вследствие развития в них различных экзотермических химических процессов: выпадения солей, образования новых минералов и т. д.

Повышение температуры вызывает разложение или, как говорят, деструкцию органического вещества: более сложные полимерные соединения разлагаются, образуя менее сложные соединения, в том числе и углеводороды. Благодаря этому с увеличением глубины залегания в органическом веществе осадочных пород растет содержание битумов и в составе последних - количество жидких и твердых углеводородов. Увеличивается и количество газообразных углеводородов.

Источники образования отдельных компонентов нефти показаны на рис. 32. Темп деструкции органического вещества резко повышается после достижения температуры порядка 60°С, что в большинстве случаев характерно для глубин порядка 1500-2000 м. По мере дальнейшего повышения температуры темп деструкции несколько снижается, но при этом из керогена продолжается образование новых порций битума, в которых содержатся новые и новые порции твердых, жидких и газообразных углеводородов и других соединений (рис. 33). Этот процесс продолжается до температур порядка 180-200°С. Дальнейшее повышение температуры приводит к деструкции образовавшихся жидких и твердых углеводородов, когда из органического вещества образуются только или почти только газообразные углеводороды и графит.

Рис. 32. Источники образования отдельных компонентов нефти

Рис. 33. Схема превращения керогена в нефть и газ

Интервал глубин, в котором из органического вещества образуются максимальные количества жидких углеводородов, Н. Б. Вассоевич предложил называть главной зоной нефтеобразования. Эта зона располагается на глубине порядка 1500-3000 м (в разных регионах по разному). Верхний интервал глубин, на которых образуется газ, назван Н. Б. Вассоевичем зоной газообразования, нижний интервал - главной зоной газообразования (табл. 2).

Таблица 2. Глубины и характеристика зон нефте и газообразования (по Н. Б. Вассоевичу и др.)

Описанная выше картина весьма схематизирована. Дело в том, что количество и битумов и углеводородов, образующихся на разных глубинах, а стало быть, и при разных температурах, во многом зависит от состава исходного органического вещества, степени его раздробленности, характера осадков, в котором оно находится и т. д. Так, установлено, что органическое вещество, представленное в основном остатками наземной растительности (так называемое гумусовое) дает при разложении больше газообразных углеводородов, жидкие углеводороды начинают образовываться из него при борее высоких температурах. Органическое вещество, накапливающееся в морских осадках, как правило, генерирует больше нефти.

Приведенная выше зависимость количества и состава органического вещества от температуры не только установлена в самых различных областях мира, но и наблюдается при проведении подобных экспериментов на моделях в лабораториях. Не останавливаясь на химической стороне указанного процесса, отметим лишь, что многими исследователями создана математическая модель этого процесса, позволяющая с помощью ЭВМ производить необходимые расчеты.

Образование газов из остатков наземной растительности в процессе формирования ископаемых углей изучено достаточно хорошо как на природном материале, так и экспериментально. Как отмечалось, уже на первой стадии при образовании торфа в болотах выделяется значительное количество метана. В дальнейшем при переходе торфа в бурый уголь, который при повышении температуры превращается в свою очередь в каменный уголь, а последний - в полуантрацит и антрацит, продолжается выделение метана и других газообразных, жидких и твердых углеводородов, а также различных летучих и нелетучих веществ - воды, углекислоты, сероводорода и др.

Учеными довольно точно рассчитаны количества образующихся при указанных процессах веществ и составлены соответствующие формулы. Выделение при этом метана и других углеводородов подтверждается наличием их в углях. Как известно, газоносность углей создает большие трудности при их добыче.

Наконец, образование метана и других углеводородов при нагревании угля подтверждается огромным количеством экспериментов, проводимых в разных странах.

Описанные выше процессы превращения органического вещества в определенной степени являются процессами изменения его физического состояния: из твердого вещества образуется полужидкое и газообразное. Это сразу нарушает создавшееся в породе равновесие вызывает увеличение давления флюидов в порах, до этого заполненных водой и, возможно, некоторым количеством газа, выделяющегося на микробиальной стадии. На жидкие и газообразные вещества начинают действовать иные силы - поверхностного или молекулярного притяжения, гравитационные и др. В результате этого начинается миграция - перемещение жидких битумов и образовавшегося газа из глинистых или других тонкозернистых пород (где содержание органического вещества выше и образовалось больше этих веществ) в песчаные или другие крупнопористые породы, где меньше органического вещества и давление флюидов (воды и газа), как правило, ниже.

Поделиться:
Популярные книги

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость