Чтение онлайн

на главную - закладки

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

В рамках настоящего рассуждения я буду полагать, что ни один из подобных псевдослучайных элементов не играет в происходящем иной роли, чем та, которую могут выполнить (по меньшей мере с тем же успехом) элементы подлинно случайные. Вполне естественная, на мой взгляд, позиция. Впрочем, не исключается и возможность обнаружения в поведении хаотических систем (отнюдь не сводящемся только лишь к моделированию случайности) чего-то такого, что может послужить приближением какой-либо интересующей нас разновидности невычислительного поведения. Я не припомню, чтобы такая возможность где-либо всерьез обсуждалась, хотя есть люди, которые твердо убеждены в том, что хаотическое поведение представляет собой фундаментальный аспект деятельности мозга. Лично для меня подобные аргументы останутся неубедительными до тех пор, пока мне не продемонстрируют какое-нибудь существенно неслучайное (т.е. непсевдослучайное) поведение такой хаотической системы — поведение, которое может в сколько-нибудь сильном смысле являться приближением поведения подлинно невычислительного. Ни один намек на подобного рода демонстрацию моих ушей пока не достиг. Более того, как мы подчеркнем несколько позднее ( §3.22 ), в любом случае маловероятно, что хаотическое поведение сможет проигнорировать те сложности, которые представляет для вычислительной модели разума гёделевское доказательство.

Допустим

пока, что любые псевдослучайные (или иным образом хаотические) элементы в поведении нашего робота или в его окружении можно заменить элементами подлинно случайными, причем без какой бы то ни было потери эффективности. Для выяснения роли подлинной случайности нам необходимо составить ансамбльиз всех возможных альтернативных вариантов. Поскольку мы предполагаем, что наш робот имеет цифровое управление, и, соответственно, его окружение также можно реализовать в каком-либо цифровом виде (вспомним о «внутренних» и «внешних» участках ленты нашей описанной выше машины Тьюринга; см. также §1.8 ), то количество подобных возможных альтернатив непременно будет конечным. Это число может быть оченьбольшим, и все же полное описание всех упомянутых альтернатив представляет собой задачу чисто вычислительного характера. Таким образом, и сам полный ансамбль всех возможных роботов, каждый из которых действует в соответствии с заложенными нами механизмами, составляет всего-навсего вычислительную систему — пусть даже такую, какую нам вряд ли удастся реализовать на практике, используя те компьютеры, которыми мы располагаем в настоящее время или можем вообразить в обозримом будущем. Тем не менее, несмотря на малую вероятность практического осуществления совокупного моделирования всех возможных роботов, функционирующих в соответствии с набором механизмов M, само вычисление «непознаваемым» считаться не может; иначе говоря, мы способны понять (теоретически), как построить такой компьютер — или машину Тьюринга, — который с подобным моделированием справится, пусть даже оно пока и не осуществимо практически. В этом состоит ключевой момент нашего рассуждения. Познаваемым механизмом или познаваемым вычислением является тот механизм или то вычисление, которое человек способен описать; совсем не обязательно действительно выполнять это вычисление ни самому человеку, ни даже компьютеру, который человек в состоянии в данных обстоятельствах построить. Ранее (в комментарии к Q8) мы уже высказывали весьма похожее соображение; и то, и другое вполне согласуются с терминологией, введенной в начале §3.5 .

3.19. Исключение ошибочных -утверждений

Вернемся к вопросу об ошибочных (но допускающих исправление) -утверждениях, которые может время от времени выдавать наш робот. Предположим, что робот такую ошибку все-таки совершил. Если мы можем допустить, что какой-либо другой робот, или тот же робот несколько позднее, или другой экземпляртого же робота такую же ошибку вряд ли совершит, то мы в принципесможем установить факт ошибочности данного -утверждения, проанализировав действия ансамбля из всех возможных роботов. Представим себе, что моделирование поведения всей совокупности возможных роботов осуществляется в нашем случае таким образом, что различные этапы развития различных экземпляров нашего робота мы рассматриваем как одновременные. (Это делается лишь для удобства рассмотрения и никоим образом не подразумевает, что для такого моделирования непременно требуется параллельное выполнение действий. Как мы уже видели, принципиальных различий, помимо эффективности, между параллельным и последовательным выполнением вычислений нет; см. §1.5 ). Такой подход должен, в принципе, дать нам возможность уже на стадии рассмотрения результата моделирования выделить из общей массы корректных -утверждений редкие (относительно) ошибочные -утверждения, воспользовавшись тем обстоятельством, что ошибочные утверждения «исправимы» и будут посему однозначно идентифицироваться как ошибочные подавляющим большинством участвующих в модели экземпляров нашего робота, — по крайней мере, с накоплением с течением времени (модельного) различными экземплярами робота достаточного параллельного «опыта». Я вовсе не требую, чтобы подобная процедура была осуществима на практике; достаточно, чтобы она была вычислительной, а лежащие в основе всего этого вычисления правила M— в принципе «познаваемыми».

Для того чтобы приблизить нашу модель к виду, приличествующему человеческому математическому сообществу, а также лишний раз удостовериться в отсутствии ошибок в -утверждениях, рассмотрим ситуацию, в которой все окружение нашего робота разделяется на две части: сообществодругих роботов и остальное, лишенное роботов (а также и людей), окружение; в дополнение к остальному окружению, в модель следует ввести некоторое количество учителей, по крайней мере, на ранних этапах развития роботов, и хотя бы для того, чтобы все роботы одинаково понимали строгий смысл присвоения тому или иному утверждению статуса . В моделируемый нами ансамбль войдут на правах различных экземпляров все возможные различные варианты поведения всехроботов, а также все возможные (релевантные) варианты остального окружения и предоставляемых человеком сведений, варьирующиеся в зависимости от конкретного выбора задействованных в модели случайных параметров. Как и ранее, правила, по которым будет функционировать наша модель (и которые я опять обозначу буквой M), можно полагать в полной мере познаваемыми, невзирая на необычайную сложность всех сопутствующих расчетов, необходимых для ее практической реализации.

Предположим, что мы берем на заметку все (в принципе) 1– высказывания, -утверждаемые (а также все высказывания с -утвержденными отрицаниями) любым из всевозможных экземпляров наших (вычислительно моделируемых) роботов. Объединим все подобные -утверждения в отдельную группу и назовем их безошибочными. Далее, мы можем потребовать, чтобы любое -утверждение относительно того или иного 1– высказывания игнорировалось, если в течение некоторого промежутка времени T(в прошлом или в будущем) количество rразличных экземпляров этого -утверждения в ансамбле из всех одновременно действующих роботов не удовлетворит неравенству r> L+ Ns, где Lи Nсуть некоторые достаточно

большие числа, а s— количество -утверждений, производимых в течение того же промежутка времени и занимающих относительно рассматриваемого 1– высказывания противоположную позицию либо просто утверждающих, что рассуждения, на которые опирается исходное -утверждение, ошибочны. При желании мы можем настаивать на том, чтобы промежуток времени T(это время не обязательно должно совпадать с «реальным» моделируемым временем и может измеряться в некоторых единицах вычислительной активности), равно как и числа Lи N. увеличивался по мере увеличения «сложности» -утверждаемого 1– высказывания.

Понятию «сложности» применительно к 1– высказываниям можно придать точный характер на основании спецификаций машины Тьюринга, как мы это уже делали в §2.6 (в конце комментария к возражению Q8). Для большей конкретности мы можем воспользоваться явными формулировками, представленными в НРК (глава 2), как вкратце показано в приложении А (а это уже здесь). Итак, степенью сложности 1– высказывания, утверждающего незавершаемость вычисления T m( n) машины Тьюринга, мы будем полагать число знаков в двоичном представлении большего из пары чисел mи n.

Причина введения в данное рассуждение числа L— вместо того чтобы удовлетвориться какой-нибудь огромной величиной в лице одного лишь коэффициента N, — заключается в необходимости учета следующей возможности. Предположим, что внутри нашего ансамбля, благодаря редчайшей случайности, появляется «безумный» робот, который формулирует какое-нибудь абсолютно нелепое -утверждение, ничего не сообщая о нем остальным роботам, причем нелепость этого утверждения настолько велика, что ни одному из роботов никогда не придет в «голову» — хотя бы просто на всякий случай — сформулировать его опровержение. В отсутствие числа Lтакое -утверждение автоматически попадет, в соответствии с нашими критериями, в группу «безошибочных». Введение же достаточно большого Lтакую ситуацию предотвратит — при условии, разумеется, что подобное «безумие» возникает среди роботов не часто. (Вполне возможно, что я упустил из виду еще что-нибудь, и необходимо будет позаботиться о каких-то дополнительных мерах предосторожности. Представляется разумным, однако, по крайней мере на данный момент, ограничиться критериями, предложенными выше.)

Учитывая, что все -утверждения, согласно исходному допущению, следует полагать «неопровержимыми» заявлениями нашего робота (основанными на, по всей видимости, присущих роботу четких логических принципах и посему не содержащими ничего такого, в чем робот испытывает хотя бы малейшее сомнение), то вполне разумным представляется предположение, что вышеописанным образом действительно можно устранить редкие промахи в рассуждениях робота, причем функции T, L и N вряд ли окажутся чем-то из ряда вон выходящим. Предположив, что все так и есть, мы опять получаем не что иное, как вычислительнуюсистему — систему познаваемую(в том смысле, что познаваемыми являются лежащие в основе системы правила) при условии познаваемости исходного набора механизмов M, определяющего поведение нашего робота. Эта вычислительная система дает нам новую формальную систему Q'( M) (также познаваемую), теоремами которой являются те самые безошибочные– утверждения (либо утверждения, выводимые из них посредством простых логических операций исчисления предикатов).

Вообще говоря, для нас с вами важно не столько то, что эти утверждения действительнобезошибочны, сколько то, что в их безошибочности убежденысами роботы (для приверженцев точки зрения Bособо оговоримся, что концепцию роботовой «убежденности» следует понимать в чисто операционном смысле моделированияроботом этой самой убежденности, см. §§3.12 , 3.17 ).

Если точнее, то нам требуется, чтобы робот был готов поверить в то, что упомянутые -утверждения действительно безошибочны, исходя из допущения, что именно набором механизмов Mи определяется его поведение (гипотеза Mиз §3.16 ). До сих пор, в данном разделе, мы занимались исключительно устранением ошибок в -утверждениях робота. Однако, на самом деле, ввиду представленного в §3.16 фундаментального противоречия, нас интересует устранение ошибок в его M – утверждениях, т.е. в тех 1– высказываниях, что по неопровержимой убежденности робота следуют из гипотезы M. Поскольку принятие роботами формальной системы Q'( M) в любом случае обусловлено гипотезой M, мы вполне можем предложить им для обдумывания и более обширную формальную систему Q' M ( M), определяемую аналогично формальной системе Q M ( M) из §3.16 . Под Q' M ( M) в данном случае понимается формальная система, построенная из M – утверждений, «безошибочность» которых установлена в соответствии с вышеописанными критериями T, Lи N. B частности, утверждение «утверждение G( Q' M ( M)) истинно» считается здесь безошибочным M – утверждением. Те же рассуждения, что и в §3.16 , приводят нас к выводу, что роботы не смогут принять допущение, что они построены в соответствии с набором механизмов M(вкупе с проверочными критериями T, Lи N), независимо от того, какие именно вычислительные правила Mмы им предложим.

Поделиться:
Популярные книги

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Последний попаданец 3

Зубов Константин
3. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 3

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора