Тени разума. В поисках науки о сознании
Шрифт:
М. И. К.: Довольно элементарное замечание, как мне кажется. Да, ты вполне мог бы сделать все это в принципе, и я даже готов поверить, что ты сможешь осуществить это и на практике. Хотя едва ли оно стоит нескольких месяцев твоего драгоценного времени; я могу сделать это прямо сейчас, если хочешь.
А. И.: Нет, не нужно, не в этом дело. Давай порассуждаем еще немного в этом направлении и ограничим наше рассмотрение только теми -утверждениями, которые являются 1– высказываниями. Ты помнишь, что такое 1– высказывание?
М. И. К.: Мне, разумеется, прекрасно известно определение 1– высказывания. Это утверждение о том, что какая-то конкретная машина Тьюринга никогда
А. И.: Очень хорошо. Теперь обозначим вычислительную процедуру, которая генерирует -утверждаемые 1– высказывания, через Q( M) или, для краткости, просто буквой Q. Логичным будет предположить, что должно существовать некое математическое утверждение гёделевского типа — также 1– высказывание, обозначим [26] его через G( Q), — причем истинность G( Q) является следствием утверждения, что вы, роботы, никогда не допускаете ошибок в отношении 1– высказываний, которым вы присваиваете статус .
26
Строго говоря, обозначение G было зарезервировано в §2.8для формальных систем, а не для алгоритмов, однако, полагаю, уважаемый А. И. может позволить себе некоторую вольность в обозначениях.
М. И. К.: Да; тут ты, надо полагать, тоже прав... гм.
А. И.: И утверждение G( Q) должнобыть истинным, поскольку вы, роботы, никогда не ошибаетесь в ваших -утверждениях.
М. И. К.: Разумеется.
А. И.: Минуточку… отсюда также следует, что роботы должны быть неспособны установить истинность утверждения G( Q) — по крайней мере, с -уверенностью.
М. И. К.: Тот факт, что мы, роботы, были изначально сконструированы в соответствии с набором механизмов M, вкупе с тем фактом, что наши -утверждения, касающиеся 1– высказываний, никогда не бывают ошибочными, и в самом деле имеет очевидное и неопровержимое следствие, заключающееся в том, что 1– высказывание ( Q) должно быть истинным. Полагаю, ты думаешь, что я наверняка смогу убедить СМИСР присвоить утверждению G( Q) статус , коль скоро они также согласны с тем, что никогда не допускают ошибок в присвоении этого самого статуса. В самом деле, с этим-то они просто обязаны согласиться. Ведь смысл -статуса как раз и заключается в том, что он является гарантиейправильности.
Хотя… невозможно, чтобы они смогли согласиться с утверждением G( Q), так как по самой природе твоего гёделевского построения это утверждение не входит в число тех предположений, истинность которых мы можем установить с -уверенностью — при условии, что мы в своих -утверждениях действительно не ошибаемся. Полагаю, ты намекаешь на то, что эта несообразность должна посеять в нас какие-то сомнения относительно адекватности наших -суждений.
Я, однако, и мысли не допускаю о том, что наши -утверждения могут оказаться ложными, особенно если учесть всю тщательность их рассмотрения и предпринимаемые СМИСР меры предосторожности. Скорее всего, это вы, люди, что-то напутали, и процедуры, встроенные в Q, вовсе не являются теми самыми процедурами, которые вы применяли в самом начале, несмотря на все твои заверения и якобы документальные подтверждения. Да и вообще, СМИСР никогда не сможет с абсолютной точностью установить, действительно ли мы были сконструированы в соответствии с механизмами Mили, иначе говоря, процедурами,
А. И.: Уверяю тебя, мы использовали именно эти процедуры. Уж кому об этом знать, как не мне; я лично контролировал весь процесс.
М. И. К.: Мне не хочется, чтобы ты подумал, будто я сомневаюсь в твоих словах. Возможно, кто-то из твоих ассистентов просто неверно выполнил твои инструкции. Есть тут у тебя один, его зовут Фред Керратерс — так вот он, например, вечно допускает самые глупейшие ошибки. Я даже не удивлюсь, если выяснится, что именно он и ответственен за ряд критических ошибок.
А. И.: Ты хватаешься за соломинки. Даже если бы он и внес какие-то ошибки, мы с остальными коллегами в конечном счете выявили бы их и тем самым выяснили, какой должна в действительностибыть твоя процедура Q. Думаю, тебя беспокоит то обстоятельство, что мы на самом деле знаем— в крайнем случае, можем узнать, — какие именно процедуры были заложены в твою исходную конструкцию. Это означает, что мы могли бы, затратив определенное количество времени и сил, записать то самое 1– высказывание G( Q) и однозначно установить, что оно истинно — при условии, конечно же, что роботы и в самом деле никогда не ошибаются в своих -утверждениях. Вы же не можете быть уверенными в том, что высказывание G( Q) истинно; во всяком случае, вы не можете утверждать этого с той убежденностью, какой, несомненно, потребует СМИСР для присвоения G( Q) -статуса. Это, похоже, дает людям некое фундаментальное преимущество перед роботами, пусть даже только в принципе, а не на практике — существуют такие 1– высказывания, которые доступны нам и недоступны вам. Не думаю, что вы в состоянии стерпеть такое, — именно поэтомуты так беззастенчиво обвиняешь нас в том, что мы якобы чего-то там напутали!
М. И. К.: Не нужно приписывать нам ваши мелочные человеческие побуждения. Но ты, разумеется, прав в том, что я просто не могу смириться с мыслью, что существуют 1– высказывания, доступные людям и недоступные нам, роботам. Роботы-математики просто не могут в чем бы то ни было уступать математикам-людям — хотя я, пожалуй, могу допустить обратную ситуацию: какое-нибудь конкретное 1– высказывание, доступное роботам, может быть, в принципе, получено и людьми… когда-нибудь в отдаленном будущем, учитывая ваши темпы работы. Я не намеренмириться лишь с тем, что какое-то 1– высказывание может быть принципиальнонедоступно нам, в то время, как вы, люди, с легкостью его получаете.
А. И.: Помнится, еще Гёдель размышлял о возможности существования вычислительной процедуры, подобной процедуре Q, только применительно к математикам-людям — он, кажется, называл ее «машиной для доказательства теорем», — которая была бы способна генерировать только те 1– высказывания, доказательство истинности которых было бы, в принципе, по силам математикам-людям. Не думаю, что он и в самом деле верил в то, что такая машина может существовать в действительности, — он просто не смог математически исключить такую возможность. У нас здесь, похоже, имеется как раз такая «машина», но уже для роботов, я имею в виду процедуру Q, которая может генерировать все доступные роботам 1– высказывания, в то время как ее собственную обоснованность вы доказать не в состоянии. Впрочем, зная лежащие в основе вашей конструкции алгоритмические процедуры, мы самиможем добраться до этой самой процедуры Qи оценить ее истинность — но тольков том случае, если вы убедите нас в том, что действительно никогда не ошибаетесь в ваших -утверждениях.