Тени разума. В поисках науки о сознании
Шрифт:
Помимо соответствующих динамических уравнений (Ньютона, Максвелла, Эйнштейна или кого угодно еще), исследователь таких систем должен взять на вооружение еще один физический принцип — второй закон термодинамики {61} . Нужен он, в сущности, для того, чтобы исключить из рассмотрения те начальные состояния движения отдельных частиц, что ведут к совершенно невероятным, хотя и возможным динамически, эволюциям. Применение второго закона позволяет гарантировать, что данная эволюция моделируемой системы действительно является «типичной», что мы не получим в результате наших усилий атипичнуюмодель, не имеющую к решаемой задаче никакого практического отношения. С помощью второго закона можно довольно точно рассчитывать дальнейшую эволюцию систем, содержащих огромное количество частиц, отследить движение каждой из которых мы физически не в состоянии.
Зададим себе интересный — и весьма непростой — вопрос: почему, несмотря на то, что динамические
Что касается Большого Взрыва, то существенным элементом соответствующих гипотез является то, что на самых ранних его стадиях составляющая Вселенную материя находилась в состоянии теплового равновесия. Что же такое «тепловое равновесие»? Исследование состояний теплового равновесия — это крайность, противоположная точному моделированию движения небольшого количества объектов (предпринятому, например, в вышеописанном случае двойного пульсара). Здесь нас интересует исключительно «типичное поведение» в его чистейшем и наиболее наглядном виде. Состояние равновесия — это, вообще говоря, состояние системы, которая полностью «устоялась» и не намерена из этого своего состояния выходить, даже если ее слегка «потревожить». В случае систем с большим количеством частиц (или с большим количеством степеней свободы) — т.е. там, где рассматривается уже не движение каждой отдельной частицы, но усредненное поведение этих частиц и усредненные же параметры (например, температура и давление), — состоянием, в которое в конечном счете, согласно второму закону термодинамики (принцип максимума энтропии), приходит система, будет именно состояние тепловогоравновесия. Уточнение «теплового» в данном случае подразумевает, что речь идет о некотором усреднении разнонаправленного движения большого количества отдельных частиц, составляющих систему. Именно средние и составляют предмет исследования в термодинамике — т.е. поведение не индивидуальное, но типичное.
Строго говоря, из всего вышеизложенного следует, что когда речь заходит о термодинамическом состоянии системы или о тепловом равновесии, под этим вовсе не подразумевается какое-то индивидуальное состояние — скорее, имеется в виду некая совокупность, или ансамбль, состояний, которые на макроскопическом уровне представляются совершенно одинаковыми (а энтропия, если не вдаваться в детали, есть не что иное, как логарифм количества состояний в этом ансамбле). Если взять некоторое количество газа в состоянии равновесия и определить его давление, объем, а также количество и расположение молекул газа, то мы получим весьма характерное распределение вероятных скоростей частиц при тепловом равновесии (впервые это распределение было описано Максвеллом). При более тщательном анализе обнаруживается масштаб, в котором следует ожидать статистических флуктуации от идеального состояния теплового равновесия, и здесь мы вступаем во владения более сложной науки, называемой статистической механикой, — науки о статистическом поведении материи.
Может показаться, что и в моделировании физического поведения посредством математических структур также нет ничего принципиально невычислимого. После выполнения соответствующих расчетов мы, как правило, приходим к хорошему согласию между вычисленным и наблюдаемым. Однако если рассматриваемая система хоть сколько-нибудь сложнее, нежели заполненное разреженным газом пространство или обширная совокупность гравитирующих тел, нам вряд ли удастся полностью избежать проблем, обусловленных квантовомеханическойприродой составляющей систему материи. Даже такой чистейший и наиболее тщательно исследованный образчик термодинамического поведения, как состояние теплового равновесия между веществом и излучением (так называемое « абсолютно черное тело»), нельзя исчерпывающе описать в классических терминах — необходимо учитывать и квантовые процессы, происходящие на фундаментальном уровне. Более того, у истоков всей квантовой теории лежит не что иное, как предпринятая Максом Планком в 1900 году попытка анализа излучения черного тела.
Как бы то ни было, предсказания физической теории (а ныне — квантовой теории) блестяще подтверждаются. Наблюдаемая экспериментально взаимосвязь между частотой и интенсивностью излучения на этой частоте весьма точно описывается предложенной Планком формулой. Хотя в рамках настоящего рассуждения нас, вообще говоря, интересует вычислительная природа классическойтеории, я не в силах устоять перед искушением привести пример наиболее совершенного (на сегодняшний день и насколько мне известно) согласия между данными наблюдений и результатами вычислений по формуле Планка. Этот пример можно
31
Cosmic Background Explorer (англ.) — букв. «Исследователь космического фонового излучения». — Прим. перев.
Рис. 4.12. Точное согласие между результатами наблюдений, полученными со спутника СОВЕ, и теоретическими результатами в предположении «тепловой» природы излучения Большого Взрыва.
Приведенные выше примеры взяты из астрофизики — области, особое внимание в которой уделяется именно сравнению результатов громоздких вычислений с наблюдаемым поведением существующих в реальном мире систем. Прямые эксперименты в астрофизике невозможны, поэтому подтверждения теориям приходится искать путем сравнения рассчитанного (исходя из стандартных физических законов) поведения той или иной системы в той или иной предполагаемой ситуации с данными, полученными с помощью сложных наблюдательных процедур. (Наблюдения осуществляются с поверхности Земли, с аэростатов или других летательных аппаратов, размещенных в верхних слоях атмосферы, с ракет или искусственных спутников; при этом наряду с обычными оптическими телескопами применяются и самые разнообразные детекторы прочих сигналов.) Все эти вычисления, впрочем, не имеют непосредственного отношения к цели наших поисков, и я упомянул о них, главным образом, как о замечательно наглядных примерах того, насколько продуктивным инструментом исследования природы могут оказаться полные и точные вычисления, насколько хорошо вычислительные процедуры способны в действительности подражать природе. Нам же стоит уделить более пристальное внимание исследованиям биологических систем, так как именно в поведении биологических систем (а точнее — согласно выводам, к которым мы пришли в первой части, — в поведении осознающего себя мозга) следует искать возможные и необходимые проявления невычислимой физической активности.
Нет никаких сомнений в том, что вычислительные модели играют весьма важную роль в моделировании биологических систем, однако сами эти системы очевидно гораздо более сложны, чем те, с которыми имеет дело астрофизика, — соответственно, более сложной оказывается и задача построения действительно надежной модели биологической системы. Количество систем, достаточно «чистых» для того, чтобы получить при моделировании сколько-нибудь «приличную» точность, очень невелико. Мы в состоянии построить достаточно эффективные модели сравнительно простых систем — таких, например, как кровоток в сосудах различных типов или, скажем, передача сигналов по нервным волокнам (хотя в последнем случае возникают некоторые сомнения относительно того, допустимо ли рассматривать данную систему в рамках исключительно классической физики, поскольку важную роль здесь играют, наряду с физическими, и химические процессы).
Химические процессы напрямую обусловлены квантовыми эффектами, поэтому при исследовании поведения, связанного с химической активностью, мы, строго говоря, выходим за рамки классической физики. Несмотря на это, очень часто подобные «квантово обусловленные» процессы рассматриваются с позиций существенно классических. И хотя формально такой подход корректным не является, в большинстве случаев мы интуитивно предполагаем, что всевозможные тонкие квантовые эффекты (помимо тех, что «официально» учитываются стандартными правилами и законами химии, классической физики и геометрии) серьезной роли здесь не играют. С другой стороны, мне думается, что при всей разумности и даже беспроигрышности такого предположения в отношении моделирования многих биологических систем (сюда, пожалуй, можно включить и распространение нервных импульсов) все же несколько рискованно делать общие выводы о более сложных биологических процессах, опираясь лишь на их якобы полностью классическую природу, особенно если речь заходит о таких сложнейших системах, как, например, человеческий мозг. Если мы намерены прийти к сколько-нибудь общим заключениям о теоретической возможности достоверной вычислительной модели мозга, нам необходимо прежде как-то разобраться с «загадками» квантовой теории.
Именно этим мы и займемся в двух последующих главах — по крайней мере, попытаемся по мере возможности. Там, где, как мне представляется, разобраться в причудах квантовой теории невозможно в принципе, я покажу, каким образом следует модифицировать саму теорию с тем, чтобы привести ее в вид, более соответствующий нашим представлениям о правдоподобной картине мира.
5. Структура квантового мира
5.1. Квантовая теория: головоломки и парадоксы