Чтение онлайн

на главную

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

Рис. 5.10. Задача Кардано об отыскании двух чисел, произведение которых равно 40, а сумма равна 10, может быть представлена графически как отыскание точек пересечения кривой xy= 40 и прямой x+ y= 10. При этом становится очевидным, что в вещественных числах эта задача решения не имеет.

Следует отметить, что необходимость в комплексных числах при записи решения кубического уравнения (представленного графически на рис. 5.9 ) обусловлена причинами, значительно более загадочными, нежели появление таких чисел в задаче, изображенной на рис. 5.10 (задача эта, в сущности, эквивалентна задаче отыскания корней квадратного уравнения x 2– 10 x+ 40 = 0). В последнем случае вполне очевидно, что без привлечения комплексных чисел задача не имеет решения вовсе, и ничто не мешает нам объявить введение таких чисел безосновательной выдумкой, затеянной

исключительно ради того, чтобы снабдить хоть каким-то «решением» уравнение, в действительности решений не имеющее. Эта позиция, однако, не объясняет, что происходит в случае кубического уравнения. Здесь ( casus irreducibilisили прямая Rна рис. 5.9 ) уравнение действительно имеет три вещественныхрешения, отрицать существование которых невозможно, однако для того, чтобы выразить любое из этих решений даже в иррациональных числах (т.е. в квадратных и кубических корнях, как в данном случае), нам приходится забираться в таинственные дебри комплексных чисел, хотя окончательный результат и принадлежит миру чисел вещественных.

Похоже, что до Кардано никто в эти таинственные дебри не углублялся и не задумывался над тем, каким образом из них «произрастает» наш собственный «вещественный» мир. (Снаружи заглядывали — например, Герон Александрийский и Диофант Александрийский в первом и, соответственно, в третьем веках нашей эры, судя по некоторым свидетельствам, размышляли над идеей существования у отрицательного числа чего-то вроде «квадратного корня», однако ни один из них не набрался храбрости объединить такие «числа» с числами вещественными и прийти таким образом к понятию комплексногочисла; не разглядели они и глубинной связи между своими «псевдочислами» и вещественными решениями уравнений.) Возможно, именно удивительное сочетание в одном человеке двух личностей — мистика и рационально мыслящего ученого — позволило Кардано уловить эти первые проблески того, что развилось позднее в одну из мощнейших математических концепций. В последующие годы, благодаря трудам Бомбелли, Коутса, Эйлера, Весселя, Арганда, Гаусса, Коши, Вейерштрасса, Римана, Леви, Льюи и многих других, теория комплексных чисел разрослась вглубь и вширь и занимает сегодня заслуженное место среди наиболее изящных и универсально применимых математических конструкций. Однако лишь с появлением в первой четверти двадцатого века квантовой теории мы осознали, какую странную и всепронизывающую роль играют комплексные числа в самой фундаментальной структуре того физического мира, в котором мы живем, — не знали мы прежде и том, насколько тесна связь между комплексными числами и вероятностями. Даже у Кардано не возникло (да и не могло возникнуть) ни малейшего подозрения о существовании таинственной глубинной связи между двумя величайшими его вкладами в математику — связи, которая образует самый фундамент материальной Вселенной на тончайшем из ее уровней.

5.6. Основные правила квантовой теории

Что же это за связь? Что объединяет комплексные числа и теорию вероятностей, имея результатом неоспоримо превосходное описание работы тончайших внутренних механизмов нашего мира? Грубо говоря, законы комплексного исчисления справедливы на очень тонком подуровне феноменов, тогда как вероятности играют свою роль на узком мостике, что соединяет тот тонкий подуровень с хорошо знакомым нам уровнем обыденного восприятия, — от такого «объяснения», разумеется, проку немного; для сколько-нибудь реального понимания нам понадобится нечто более существенное.

Рассмотрим для начала роль комплексных чисел. В силу самого их определения их очень сложно принять в качестве инструмента для описания действительной физической реальности. Наибольшая сложность заключается в том, что им, на первый взгляд, просто нет места на уровне тех феноменов, что мы способны непосредственно воспринимать, на уровне, где действуют классические законы Ньютона, Максвелла и Эйнштейна. Таким образом, для того, чтобы наглядно представить себе, как именно работает квантовая теория, необходимо (хотя бы предварительно) учесть, что физические процессы происходят на двух четко разделенных уровнях: квантовомподуровне, где как раз и играют свою странную роль комплексные числа, и классическомуровне привычных макроскопических физических законов. На квантовом уровне комплексные числа выглядят вполне естественно — однако вся эта естественность напрочь пропадает, случись им забрести на уровень классический. Я вовсе не хочу сказать, что между уровнем, на котором действуют квантовые законы, и уровнем классически воспринимаемых феноменов непременно должно наличествовать физическое разделение; давайте просто вообразим (пока), что такое разделение существует — это поможет понять смысл процедур, реально применяемых в квантовой теории. Вопрос о существовании такого физического разделения в действительностиочень глубок, и мы попытаемся на него ответить несколько позднее.

Где же начинаетсяквантовый уровень? Надо думать, квантовым называется уровень тех физических объектов, которые «достаточно малы» — например, молекулы, атомы, элементарные частицы. Впрочем, на физические расстояния это требование «малости» распространяется далеко не всегда. Эффекты квантового уровня могут возникать и на огромном удалении. Вспомним о четырех световых годах, разделяющих два додекаэдра в моей истории в §5.3 , или о двенадцати метрах, разделяющих фотоны во вполне реальном эксперименте Аспекта ( §5.4 ). Иначе говоря, квантовый уровень определяется не малым физическим размером, но чем-то более тонким, причем на данном этапе этой «формулировкой» лучше и ограничиться. Можно также приблизительно считать квантовым уровень, где мы рассматриваем очень малые изменения в энергии. Более подробно мы обсудим этот вопрос в §6.12 .

Классическим же мы называем уровень, который мы, как правило, воспринимаем непосредственно. Здесь действуют

законы классической физики, оперирующие вещественными числами, здесь имеют смысл самые обычные описания — например, те, что задают положение, скорость движения и форму футбольного мяча. Существует ли какая-либо реальная физическая граница между квантовым уровнем и уровнем классическим? Вопрос этот, как я только что отметил, очень глубок и тесно связан с трактовкой X– загадок, или квантовых парадоксов (см. §5.1 ). Поиск ответа мы отложим до лучших времен, а пока, просто из соображений удобства, будем рассматривать квантовый уровень отдельно от классического.

Какую фундаментальную роль играют комплексные числа на квантовом уровне? Возьмем для примера отдельную частицу — скажем, электрон. В классической картине мира электрон может занимать либо положение A, либо какое-нибудь другое положение B. Однако в квантовомеханическом описании перед тем же электроном открываются гораздо более широкие возможности. Он не только может занимать то или иное из указанных положений, он может находиться и в любом из ряда возможных состояний, занимая при этом (в некотором строгом смысле) оба положения одновременно! Обозначим через | A состояние, в котором электрон занимает положение A, а через | B — состояние, в котором электрон занимает положение B. [36] Тогда, согласно квантовой теории, электрону доступны следующие возможные состояния:

36

Из соображений удобства я использую здесь предложенную Дираком стандартную систему обозначений для квантовых состояний (в данном случае, скобку «кет»). Читатели, незнакомые с квантовомеханическими обозначениями, могут пока не обращать на эти скобки внимания.

Поль Дирак был одним из наиболее выдающихся физиков двадцатого столетия. Среди его достижений — общая формулировка законов квантовой теории, а также ее релятивистское обобщение, включающее в себя знаменитое «уравнение Дирака» для электрона. Дирак обладал удивительной способностью «чуять» истину — свои уравнения он оценивал в значительной степени по их эстетическимкачествам!

w| A + z| B,

причем фигурирующие здесь весовые коэффициенты wи z представлены комплексными числами(и по крайней мере одно из них должно быть отлично от нуля).

Что это означает? Если бы весовые коэффициенты были неотрицательными вещественнымичислами, то можно было предположить, что записанная комбинация представляет собой, в некотором смысле, взвешенное вероятностное ожидание положения электрона, где wи zсимволизируют относительные вероятности нахождения электрона в положении, соответственно, Aи B. Тогда отношение w: zдаст отношение вероятности нахождения электрона в точке Aк вероятности нахождения электрона в точке B. Таким образом, если этими двумя и исчерпываются доступные электрону положения, то мы получаем ожидание w/( w+ z) для электрона в точке Aи ожидание z/( w+ z) для электрона в точке B. При w= 0 электрон определенно находится в точке B; при z= 0 ищите его в точке A, больше ему деться некуда. Если состояние электрона записывается как | A + | B, это означает, что электрон может с равной вероятностью оказаться как в положении A, так и в положении B.

Однако числа wи z — комплексные, так что вышеприведенная интерпретация не имеет никакого смысла. Отношения квантовых весовых коэффициентов wи z не являютсяотношениями вероятностей. Это невозможно хотя бы потому, что вероятности всегда выражаются вещественнымичислами. Несмотря на широко распространенное мнение о вероятностной природе квантового мира, на квантовом уровне недействует карданова теория вероятностей. А вот его таинственная теория комплексных чиселпришлась здесь как нельзя более кстати — именно она лежит в основе математически точного и абсолютно безвероятностногоописания процессов, протекающих на квантовом уровне.

Пользуясь привычным и понятным языком, невозможно объяснить, что «означает» фраза «в данный момент времени электрон находится в состоянии суперпозиции двух положений с комплексными весовыми коэффициентами wи z». На настоящем этапе нам придется просто принять все это как должное; именно такими описаниями мы и вынуждены довольствоваться при рассмотрении квантовых систем. Такие суперпозиции, как сообщают естествоиспытатели, играют важную роль в действительной конструкции нашего микромира. Квантовый мир на самом делеведет себя именно таким необычным и непостижимым образом, а нам повезло набрести на этот простой факт. А от фактов никуда не уйти — имеющиеся в нашем распоряжении описания, в соответствии с которыми эволюционирует микромир, действительно являются не только математически точными, но и, более того, целиком и полностью детерминированными!

Поделиться:
Популярные книги

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Счастливый торт Шарлотты

Гринерс Эва
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Счастливый торт Шарлотты

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Имперец. Том 4

Романов Михаил Яковлевич
3. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 4

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Гром над Академией. Часть 2

Машуков Тимур
3. Гром над миром
Фантастика:
боевая фантастика
5.50
рейтинг книги
Гром над Академией. Часть 2

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8