Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Нагрев (или охлаждение) тела человека (или отдельных его частей) происходит за счёт следующих механизмов:

— лучистой теплопередачи,

— кондуктивной теплопередачи (теплопроводности),

— конвективной теплопередачи,

— испарения влаги с поверхности тела или конденсации паров воды на поверхность тела из воздуха.

Лучистая теплопередача и её особенности уже рассмотрены в предыдущем разделе (рис. 42). Выполним аналогичный анализ и для других процессов теплопередачи.

Кондуктивная теплопередача обусловлена движением молекул и может наблюдаться и в подвижном (даже навстречу газовому потоку), и в абсолютно неподвижном воздухе в случае наличия зон воздуха с различной температурой. В горячих зонах молекулы более энергичны (имеют большую скорость), чем в холодных зонах. Поэтому в процессе взаимной диффузии (миграции) молекулы из горячих зон приносят добавочное тепло, а молекулы, прибывшие в горячие зоны из холодных, приносят

холод. Величина кондуктивного теплового потока равна qконд=Т/, где — коэффициент теплопроводности среды, Т — перепад температуры на слое среды толщиной . Величина Т / называется градиентом температуры в среде. Величина к=/ называется коэффициентом кондуктивной передачи. Для оценочных расчётов можно принять к =10 Вт/(м2 град) для любых поверхностей (для раздетого ли человека, нагретых или охлаждённых стен, батарей отопления и других условно плоских поверхностей в неподвижном воздухе). Так, например, человек, выделяющий внутри себя в состояний покоя 60 Вт тепла постоянно, сбрасывает это тепло излучением лк– Т), где л=7 Вт/(м2 град) — коэффициент бытовой лучистой теплопередачи, и теплопроводностью воздуха кк– Т), где к =10 Вт/(м2 град), вследствии чего раздетый человек с температурой кожи Тк =30 °C не мёрзнет в состоянии покоя при температуре воздуха и стен 26 °C. Действительно, в соответствии с исследованиями Кричагина (1966 г.) термический комфорт раздетого лежачего человека достигается при 25–27 °C. Но если человек находится на ярком солнце, например, в высокогорных Альпах, где уровень солнечного излучения достигает 1,05 кВт/м2 (причём за счёт отражения от снега излучение исходит со всех сторон), то раздетый человек с сухой кожей в окружении деревьев не мёрзнет в абсолютно полный штиль даже при температуре воздуха снега и деревьев на уровне минус 30 °C. Но малейшие дуновения воздуха изменяют всю картину, поскольку добавляется теплоотвод за счёт конвекции (движения) воздуха. При скорости ветра 3 м/сек человек с сухой кожей на солнце в условиях высокогорья мёрзнет уже при 0 °C. Если вокруг деревьев нет, то заметным становится и вклад потери излучения в ясное небо (космос). Ещё серьёзней будут последствия увлажнения кожи раздетого человека.

Рис. 44. Характерные уровни теплопередачи одетого человека с сухой кожей при различных температурах воздуха. 1 — тепловыделение человека (обычная теплоотдача), 2 — вклад теплоотдачи испарением, 3 — вклад теплоотдачи конвекцией, 4 — вклад теплоотдачи теплопроводностью, 5 — вклад теплоотдачи излучением.

Конвективная теплопередача наблюдается только при движении воздуха. Если в случае кондуктивной теплопередачи каждая энергичная молекула с трудом мигрирует среди других молекул воздуха из горячей зоны в холодную, то в случае конвективной теплопередачи все энергичные молекулы могут разом «сдуться» ветром в составе всей массы воздуха из горячей зоны в холодную. Конвективный теплопоток равен qкoнв(кBт/м2)= СрV(Т1– Т2)=1,ЗV(Т1– Т2), где Ср и — массовая теплоёмкость и плотность воздуха, V — скорость перемещения воздуха (ветра) в м/сек, Т1 и Т2 — температуры горячей и холодной зон в °С. Именно эта конвективная теплопередача имелась в виду в разделе 5.5 при рассмотрении аэродинамики бани. Так, металлическая печь нагревает вокруг себя воздух до температуры Т1, этот горячий воздух постоянно «сдувается» потоком ветра (конвективным потоком) и заменяется на холодный воздух с температурой Т2, который в свою очередь начинает нагреваться от стенки печи. При этом воздух, контактирующий с горячей поверхностью, вовсе не обязан успеть нагреться до температуры поверхности. Нагревается до температуры поверхности лишь тонкий пристеночный слой, причём скорость его скольжения вдоль поверхности может быть много меньшей, чем скорость всего набегающего газового потока.

Если горячий воздушный поток поступает, например, сверху вниз с потолка на холодный пол (или на тело человека), то лишь небольшая (по экспериментальным оценкам примерно одна двухсотая) доля тепловой энергии горячего воздуха отдаётся самому полу. Это объясняется той банальной причиной, что не весь горячий воздух из набегающего потока может вступить в контакт с холодным полом, а лишь очень небольшая его доля. Если поток воздуха ламинарный (то

есть не имеет завихрений — турбулентностей), то теплоотдача от поверхности в набегающий поток воздуха в теории бассейнов численно равна qкoнв(кBт/м2)=0,006VT, где V — скорость движения воздуха в м/сек, Т — разница температур воздуха и поверхности. Для ориентировки приведём характеристики силы ветра по шкале Бофорта (Сборник «Путеводитель по цифрам и фактам», М.: Рипол-Классик, 2002):

Ясно, что очень большие скорости ветра в бане могут быть реализованы, может быть, лишь в молодёжных банных аттракционах будущего. В реальных банях скорости воздуха не превышают 5–7 м/сек при использовании вентиляторов и 1–3 м/сек при использовании веников. В носоглотке скорость движения воздуха при вдохе составляет 2-10 м/сек. Под напором ветра понимается избыточное статическое давление, образующееся при торможении ветра перед преградой и равное V2/2, где V — скорость ветра. Напомним, что 1 атм= 100000 Па= 750 мм рт. ст.

На рис. 45 представлены тепловые потоки на тело человека в хомотермальных условиях (или в режимах ниже хомотермальной кривой при сухой коже), когда процессы испарения и конденсации невозможны. Все три слагаемых суммарного теплового потока (кондуктивная, конвективная и лучистая составляющие) возрастают с температурой бани и при 100 °C составляют примерно по 0,5 кВт/м2, а в сумме 1,5 кВт/м2. Такие тепловые нагрузки превышают энерговыделения от тяжёлой физической работы и находятся на уровне воздействия солнечного излучения. Это означает, что могут быть реализованы жаркие климатические условия, но ни о каких обжигающих эффектах в этих режимах говорить не приходится.

Рис. 45. Тепловой поток на тело человека (безразлично с мокрой или сухой кожей) в изотермической бане с температурой Т и скоростью движения воздуха 1 м/сек в хомотермальном режиме (кривая 1). Зона 2 отвечает вкладу кондуктивной составляющей теплового потока. Зона 3 — вклад конвективной составляющей при скорости движения воздуха 1 м/сек. Зона 4 — вклад лучистой составляющей, равной разнице потоков излучения от стен и от тела человека [(Т+273)4– (40+273)4].

Вклад конвективной составляющей на рис. 45 рассчитан для условного уровня скоростей перемещения воздуха 1 м/сек, характерных для лёгких движений веника и перемещений человека в бане. При отсутствии воздушных потоков конвективная составляющая равна нулю. При больших скоростях потоков воздуха, например, в носоглотке, конвективная составляющая может стать преобладающей.

Вклад лучистой составляющей на рисунке 45 рассчитан для изотермической бани, в которой все стены, потолок и пол имеют температуру, равную температуре воздуха, и только человек имеет температуру отличную от температуры воздуха. Поэтому, приведённые значения вклада лучистой составляющей являются максимально возможными. В реальных условиях пол и стены холодней, чем потолок, поэтому на практике вклад лучистой составляющей является менее значительным.

Теплопередача, связанная с процессами испарения воды и конденсации водяных паров, может происходить кондуктивно (в неподвижном воздухе) и конвективно (при движении воздуха) и в случае теплопередачи на тело человека равна:

qисп(кВт/м2)=qqисп. конд+qисп. конв. 15(d-0,05)+28(d-0,05)V, где d — абсолютная влажность воздуха в кг/м3, V — скорость движения воздуха в м/сек. Как и в случае конвективной теплопередачи, конвективная составляющая теплового потока, связанного с испарением или конденсацией, значительно меньше (но не в двести, а восемьдесят раз) той величины 2250(d-0,05)V, которая была бы в случае, если бы весь воздух в потоке мог попасть в контакт с телом человека.

Рис. 46. Тепловой поток на тело человека (при произвольной температуре), обусловленный испарением влаги с мокрой кожи человека (поток отрицательный, поскольку тело человека при этом охлаждается) или конденсацией паров воды из воздуха на мокрую или сухую кожу человека (поток положительный). Зона 1 — вклад охлаждения (нагрева) за счёт испарения (конденсации) в неподвижном воздухе (кондуктивная составляющая). Зона 2 — вклад охлаждения (нагрева) за счёт испарения (конденсации) в подвижном воздухе (конвективная составляющая для скорости движения воздуха 1 м/сек). Кривая 3 — суммарный тепловой поток (сумма кондуктивной и конвективной составляющих при скорости воздуха V=1 м/сек).

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила