Чтение онлайн

на главную

Жанры

Теория струн и скрытые измерения вселенной
Шрифт:

Пожалуй, наиболее удивительным является то, что эта скрытая, внутренняя часть Вселенной — область, которую невозможно увидеть, ощупать, понюхать или ощутить иным образом, — может оказывать большее влияние на физические процессы, чем привычный нам мир из кирпича и камня, машин и ракет, а также миллиардов и миллиардов галактик. По крайней мере, именно это утверждает теория струн. «Все физические величины, которые можно измерить, — все фундаментальные понятия, такие как масса кварков и электронов, — определяются геометрией многообразий Калаби-Яу, — объясняет физик Джозеф Полчинский из Калифорнийского университета. — Зная форму, мы, по сути, знаем все».[71]Или, как выразился Брайан Грин: «Код Вселенной можно успешно записать языком геометрии пространств Калаби-Яу».[72] Если общая теория относительности Эйнштейна сводит гравитацию к геометрии, то струнные теоретики надеются развить это утверждение дальше, доказав, что геометрия в виде многообразий Калаби-Яу лежит в основе не только гравитации, но и всей физики в целом.

Я, конечно, не собираюсь ставить под сомнение эти фундаментальные

утверждения. Но разумный человек может задаться вопросом: если гипотеза Калаби слишком хороша для того, чтобы быть истинной, то как относиться к вышеуказанному утверждению? И каким образом можно объяснить все вышесказанное? Я опасаюсь, что настоящее объяснение покажется кому-то неудовлетворительным и даже представляющим собой подобие порочного круга — способность многообразий Калаби-Яу к столь чудесным свершениям объясняется тем, что это их свойство с самого начала было встроено в механизм работы теории струн. Впрочем, даже если и так, то все же возможно дать некое общее представление о том, как этот «механизм» — с десятимерными многообразиями на входе и четырехмерной физикой на выходе — работает на самом деле. Попробуем представить максимально упрощенную картину способа получения элементарных частиц и их масс из заданного многообразия Калаби-Яу при учете того, что соответствующее многообразие является неодносвязным. Неодносвязное многообразие подобно тору с одной или большим числом дырок, часть петель которого, находящихся на его поверхности, не могут быть стянуты в точку, в противоположность сфере — односвязной поверхности, на которой любая петля может быть стянута в точку подобно тому как натянутая на глобус упругая резиновая лента соскальзывает с экватора на один из полюсов. Начав со сложного шестимерного многообразия с определенным числом дырок, рассчитаем все возможные пути, которыми можно пропустить струны через многообразие, проходя через различные дырки один или более раз. Это нелегкая задача, поскольку путей пропускания струн через многообразие существует огромное множество, а петли могут иметь разные размеры, зависящие, в свою очередь, от размеров дырок. Из всех этих возможностей вы можете составить список потенциальных частиц. Массы частиц можно определить, умножая длины струн на их натяжение, эквивалентное линейной плотности энергии струны, входящей в кинетическую энергию колебания. Объекты, получаемые таким образом, могут иметь любое число измерений между нулем и шестью. Некоторые из них разрешены, некоторые — нет. Взяв все разрешенные объекты и все разрешенные движения, вы и получите окончательный список частиц и их масс.

Рассматривая этот вопрос с другой стороны, можно отметить, что, согласно представлениям, царящим в квантовой физике, в силу концепции так называемого корпускулярно-волнового дуализма, каждую частицу можно представить в виде волны и каждую волну в виде частицы. Различные частицы в теории струн, как уже говорилось ранее, соответствуют различным модам колебаний струны, тогда как струна, колеблющаяся определенным, заранее заданным образом, также подобна волне. Вопрос в том, чтобы понять, как геометрия этих пространств будет влиять на возникающие волны.

Представим, что пространство, о котором идет речь, это Тихий океан, и мы находимся в его середине, за тысячи миль от ближайшего континента и намного выше его дна. Можно представить себе, что в волны, возникающие возле нас на поверхности океана, практически не будут зависеть от формы или топографии океанического дна, находящегося под нами на расстоянии многих миль. Но в ограниченном пространстве, например в мелкой и узкой бухте, в которой даже небольшое сотрясение дна может привести к возникновению цунами или, если брать менее экстремальный пример, для которой рифы и скалы под поверхностью воды имеют огромное влияние на формирование и разрушение волн, картина будет совсем иная. В этом примере открытый океан играет роль некомпактного или протяженного пространства, тогда как прибрежные воды больше похожи на небольшие, компактные измерения теории струн, где геометрия определяет форму возникающих волн и, следовательно, тип возможных частиц.

В качестве еще одного примера компактного пространства можно привести струнные музыкальные инструменты, например скрипку, которые при помощи определенных колебаний, или волн, порождают не частицы, а звуки. Звук, производимый струной, зависит не только от ее длины и толщины, но и от формы внутренней части инструмента — акустической камеры, — где волны определенных частот входят в резонанс, достигая максимальной амплитуды. Струны музыкальных инструментов получили названия по их основным частотам, для большинства скрипок это G, D, A и E (соль, ре, ля, ми). Физики, подобно скрипичным мастерам, подбирающим формы, соответствующие тем звукам, которые они собираются получить, охотятся на многообразия Калаби-Яу с соответствующей геометрией, способной привести к возникновению тех волн и частиц, с которыми мы постоянно сталкиваемся в окружающем нас мире.

Путь, который физики обычно выбирают для атаки на задачи такого рода, состоит в нахождении решений волнового уравнения, более известного как уравнение Дирака. Решениями волнового уравнения, что неудивительно, являются волны — и соответствующие им частицы. Но это очень сложное для решения уравнение, и мы обычно не в состоянии решить его для всех элементарных частиц, существующих в природе. Это возможно только для так называемых безмассовых частиц, соответствующих нижним, или фундаментальным, частотам определенной струны. К безмассовым принято относить все частицы, которые мы видим или интуитивно чувствуем в окружающем мире, включая те, которые лишь на считанные мгновения возникают внутри ускорителей. Некоторые из этих частиц — например, электроны, мюоны и нейтрино — на самом деле имеют массу, хотя и называются безмассовыми. Но механизм обретения ими массы совершенно не похож на механизм обретения массы так называемыми массивными частицами, формирование которых ожидается при более высоких энергиях на «струнной шкале». Масса обычных частиц (например, электронов) намного меньше массы частиц, называемых массивными, — в квадриллион раз или даже больше, — поэтому определение обычных частиц как безмассовых представляет собой достаточно хорошую аппроксимацию.

Даже если ограничить себя только безмассовыми частицами, получив тем самым возможность найти решения уравнения Дирака, задача по-прежнему останется весьма непростой. К счастью, многообразия Калаби-Яу обладают определенными характеристиками, которые помогают в этом вопросе. Первой из них является суперсимметрия, уменьшающая число переменных, превращая тем самым дифференциальное уравнение второго порядка (уравнение, в котором некоторые из производных взяты дважды) в дифференциальное уравнение первого порядка (уравнение, в котором все производные взяты только единожды). Еще одним вкладом суперсимметрии в решение уравнения является то, что она сопоставляет каждому фермиону свой собственный бозон. Найдя все фермионы, вы автоматически найдете и все бозоны, и наоборот. Итак, достаточно разобраться только с одним из классов частиц, поэтому можно выбрать тот из них, для которого уравнения решать проще.

Еще одной особенностью многообразий Калаби-Яу и, в частности, их геометрии, является то, что для них решения уравнения Дирака — в этом случае соответствующие безмассовым частицам — совпадают с решениями другого уравнения, известного как уравнение Лапласа, работать с которым намного проще. Наибольшее преимущество в данном случае заключается в том, что решения уравнения Лапласа можно получить — и, следовательно, распознать безмассовые частицы, — в принципе, и не решая каких-либо дифференциальных уравнений. Нет необходимости знать точную геометрию или метрику многообразий Калаби-Яу. Вместо этого все необходимое можно получить из топологических «данных» о многообразии Калаби-Яу, содержащихся в матрице 4x4, называемой ромбом Ходжа. О ромбах Ходжа речь пойдет в следующей главе, поэтому сейчас я скажу только то, что эта топологическая уловка позволяет нам весьма успешно собрать воедино все безмассовые частицы.

Впрочем, нахождение частиц является только началом. В конце концов, физика — это нечто большее, чем простой набор частиц. Кроме этого существуют еще и силы или взаимодействия между частицами. В теории струн струнные петли, движущиеся через пространство, могут либо соединяться, либо расщепляться, и их склонность к одному или другому процессу зависит от струнной константы связи, выступающей мерой взаимодействия между струнами.

Расчет сил взаимодействия между частицами является весьма кропотливой задачей, требующей для своего решения использования почти всего арсенала инструментов теории струн, так что работа над одной моделью на практике занимает не меньше года. И вновь суперсимметрия делает наши вычисления менее накладными. Также может помочь и математика, поскольку этот тип проблем уже давно знаком геометрам, в результате чего у них появилось множество инструментов, которыми можно воспользоваться. Петля, свободно движущаяся и колеблющаяся в пространстве Калаби-Яу, может самопроизвольно превратиться в восьмерку и затем расщепиться на две отдельные петли. И напротив, две отдельные петли могут объединиться в восьмерку. При прохождении через пространство-время эти петли заметают риманову поверхность, точно определяющую картину взаимодействий между струнами, хотя до появления на сцене теории струн математикам не приходило в голову каким-то образом связать ее с физикой.

Насколько же близко могут подойти ученые в своих предсказаниях к свойствам реального мира, получив в руки все эти инструменты? Этой теме будет посвящена девятая глава, а сейчас мы рассмотрим статью Канделаса, Горовица, Строминджера и Виттена, вышедшую в 1985 году и представляющую собой первую серьезную попытку показать способность теории струн при помощи компактификаций Калаби-Яу описывать реальный мир.[73] Уже тогда физики были способны получать хорошее соответствие теории с практикой. В частности, их модель предсказала оптимальную для случая четырех измерений суперсимметрию, обозначаемую как N=1, что означает инвариантность пространства относительно четырех симметричных преобразований, которые можно рассматривать как четыре различных вида вращений. Это само по себе уже являлось большим успехом, так как в случае получения ими максимального значения суперсимметрии N = 8, что соответствовало бы наиболее сложной ситуации — инвариантности относительно двадцати двух различных симметричных операций, — это наложило бы на физику столь сильные ограничения, что единственным допустимым вариантом Вселенной стало бы плоское пространство без какой-либо кривизны, в существовании которой, конечно, сомнений быть не может, или любых других неоднородностей типа черных дыр, делающих жизнь, по крайней мере, физиков-теоретиков, столь интересной. В случае, если бы Канделас и его коллеги потерпели неудачу на этом фронте и было бы получено доказательство, что данные шестимерные пространства не способны обладать необходимой суперсимметрией, компактификация в теории струн, по крайней мере, для данного примера, потерпела бы неудачу.

Поделиться:
Популярные книги

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Агенты ВКС

Вайс Александр
3. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Агенты ВКС

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Райнера: Сила души

Макушева Магда
3. Райнера
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Райнера: Сила души

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3