Теория струн и скрытые измерения Вселенной
Шрифт:
На протяжении данной главы всем этим понятиям будет дано объяснение. При этом основной идеей гипотезы является возможность – с математической и геометрической точек зрения – существования пространств, удовлетворяющих всему этому сложному набору требований.
Мне кажется, что такие пространства столь же редки, как алмазы, и гипотеза Калаби предоставляет карту, позволяющую их обнаружить. Зная, как решить уравнение для одного из многообразий и понимая общую структуру этого уравнения, при помощи той же идеи можно решить соответствующие уравнения для всехкэлеровых многообразий, удовлетворяющих заданным требованиям. Гипотеза Калаби предлагает существование общего правила, указывающего нам на то, что «алмазы» находятся именно в данном месте – или, иными словами, на то, что та метрика, которую мы ищем, существует.
Из этой идеи зародилась та работа, благодаря которой я получил сегодняшнюю известность. Можно сказать, что именно в этой работе я нашел свое истинное призвание. Вне зависимости оттого, в какой области мы работаем, мы все стремимся найти наше собственное призвание в жизни – то особое, для которого мы появились на этой земле. Для актера таким призванием может стать роль Стэнли Ковальски в пьесе Теннесси Уильямса «Трамвай “Желание”». Или заглавная роль в «Гамлете». Для пожарного это может быть победа над пожаром десятой категории сложности. Для криминалиста – поимка Врага Общества Номер Один. Ну а в математике найти свое призвание – значит найти ту задачу, работа над которой была предопределена тебе самой судьбой. Хотя, возможно, дело тут и не в судьбе. Может быть, достаточно просто наткнуться на задачу, которую ты можешь успешно решить.
Говоря откровенно, выбирая задачу для дальнейшей работы, я никогда особо не задумываюсь о том, какую роль в моей дальнейшей судьбе она может сыграть, напротив, в этих вопросах я стараюсь быть как можно более прагматичным. Моей целью является поиск новых направлений в математике, способных породить новые, неизвестные математические задачи, многие из которых и сами по себе будут интересны. Может оказаться и так, что меня заинтересует уже существующая проблема, если мне покажется, что ее решение может значительно раздвинуть горизонты той или иной области.
Гипотеза Калаби, известная к тому времени уже пару десятилетий, подходила именно под вторую категорию. Я обратил внимание на эту задачу на первом курсе аспирантуры, хотя порой мне казалось, что на самом деле это задача обратила на меня внимание. Ни одна из задач до того так не захватывала меня, как эта, поскольку я чувствовал, что ее решение может открыть дверь в совершенно новую область математики. Гипотеза Калаби отчасти затрагивала классическую проблему Пуанкаре, однако казалась мне более общей, так как из предположения Калаби следовало не только существование нового большого класса математических поверхностей и пространств, о которых до этого ничего не было известно, но и, возможно, она вела к новому пониманию пространства и времени. Для меня эта встреча с этой гипотезой была практически неизбежной: почти все дороги, по которым я двигался в своих первых исследованиях кривизны, неминуемо вели к ней.
Прежде чем приступить непосредственно к обсуждению доказательства данной гипотезы, необходимо для начала разобраться с упоминавшимися ранее понятиями, лежащими в ее основе. Гипотеза Калаби относится только к комплексным многообразиям. Понятие многообразия, как я уже говорил, аналогично понятию поверхности или пространства, но, в отличие от хорошо знакомых нам двухмерных поверхностей, многообразия могут иметь любую четную размерность, не обязательно равную двум. Ограничение по поводу четного значения размерности относится только к комплексным многообразиям, в общем случае многообразие может иметь как четную, так и нечетную размерность. По определению многообразия на малых или локальных участках имеют сходство с евклидовыми пространствами, но в больших, или так называемых глобальных, масштабах они демонстрируют заметное отличие. Так, к примеру, окружность представляет собой одномерное многообразие, и окрестность каждой из лежащей на ней точек можно уподобить отрезку прямой. Но в целом окружность совершенно не похожа на прямую линию. Теперь добавим еще одно измерение. Мы живем на поверхности сферы, которая представляет собой двухмерное многообразие. Взглянув на достаточно малый участок земной поверхности, можно обнаружить, что он имеет практически идеально плоскую форму как диск или фрагмент плоскости, несмотря на то что в целом эта поверхность искривлена и, следовательно, неевклидова. Если теперь выбрать на поверхности участок значительно большего
Одной из важных особенностей многообразий является их гладкость. Это свойство прямо вытекает из их определения, поскольку из сходства каждого малого участка поверхности с евклидовым пространством напрямую следует гладкость поверхности во всех точках. Геометры говорят о гладкости многообразия даже в том случае, если оно имеет некоторое количество «странных» точек, в которых условие локальной евклидовости не выполняется – например, точка пересечения двух линий. Такие точки носят название топологических сингулярностей, поскольку их в принципе невозможно сгладить. Вне зависимости то того, насколько мала выбранная вокруг такой точки окрестность, пересечение все равно останется пересечением.
Подобные вещи постоянно встречаются в римановой геометрии. В начале преобразования объект может быть гладким и простым для исследований, но стоит нам приблизиться к определенному пределу – скажем, постепенно заостряя его форму или срезая углы, – и возникновение сингулярности станет неизбежным. Впрочем, геометры обычно столь либеральны в этом вопросе, что даже пространство, имеющее бесконечно большое число сингулярностей, в их глазах все равно остается многообразием – в этом случае они называют его сингулярным пространством, или сингулярным многообразием, и рассматривают как предельную форму гладкого многообразия. При этом вместо двух линий, пересекающихся в одной точке, чаще рассматривают плоскости, результатом пересечения которых будет линия.
Это и есть грубое определение понятия многообразия. Теперь что касается слова «комплексное». Комплексным называется такое многообразие, каждой точке которого можно сопоставить определенное комплексное число. Подобное число имеет вид a+ ib, где аи b– действительные числа, a i– так называемая мнимая единица, определяемая как квадратный корень из -1. Как и координаты точки на плоскости, которые можно изобразить на графике с двумя осями xи y, одномерные комплексные числа можно изобразить на графике с двумя осями, соответствующими вещественной и мнимой частям.
Комплексные числа полезны по нескольким причинам – прежде всего потому, что они дают возможность извлекать квадратные корни из отрицательных чисел. При помощи комплексных чисел можно решить квадратное уравнение вида ax 2 + bx + c = 0при помощи формулы, которую многие из вас учили в средней школе x= (-b± (b 2 – 4ac))/2aвне зависимости от того, какое значение имеют величины a, bи c. После того как комплексные числа введены, уже не нужно ломать руки в отчаянии, если дискриминант b 2 – 4acвдруг окажется отрицательным; несмотря на это, уравнение все равно будет иметь решение.
Комплексные числа важны, а иногда просто незаменимы для решения полиномиальных уравнений, содержащих одну или несколько переменных и постоянных. Задача, как правило, состоит в нахождении корнейуравнения – точек, в которых значение полинома обращается в нуль. Если бы комплексных чисел не существовало, многие из подобных задач не имели бы решения. Наиболее простым примером является уравнение x 2 + 1 = 0, не имеющее вещественных корней. Данное равенство будет верным, то есть полином обратится в нуль, только в случае когда x = iили x = -i.