Теория всего (Происхождение и судьба Вселенной)
Шрифт:
Чандрасекар показал, что отталкивание, обусловленное принципом запрета, не может предотвратить коллапс звёзд, чья масса превышает вычисленный им предел. Но судьба, ожидающая такие массивные звёзды в соответствии с общей теорией относительности, оставалась невыясненной вплоть до 1939 г., когда эту задачу решил молодой американский физик Роберт Оппенгеймер. Из его расчётов, однако, вытекало, что не стоит ожидать никаких обозримых последствий, которые могли бы быть обнаружены телескопами того времени. Вскоре Вторая мировая война заставила Оппенгеймера переключиться на создание атомной бомбы. А после войны проблема гравитационного коллапса была надолго забыта, поскольку в то
Картина, вытекающая из работы Оппенгеймера, такова. Гравитационное поле звезды отклоняет траектории лучей света в пространстве-времени от тех, которые они имели бы в отсутствие звёзды. Световые конусы, которые отображают пути в пространстве и времени световых импульсов, испущенных из их вершины, вблизи поверхности звёзд слегка изгибаются «вовнутрь». Это прослеживается в изгибании света далёких звёзд во время солнечного затмения. По мере сжатия звезды гравитационное поле на её поверхности становится всё более мощным и увеличивается степень изгиба световых конусов. Свету всё труднее ускользнуть от звезды, и далёкому наблюдателю он кажется всё слабее и краснее.
В итоге, когда звезда сжалась до некоторого критического радиуса, гравитационное поле на её поверхности обретает огромную мощность, из-за чего световые конусы настолько сильно изгибаются в направлении звезды, что свет дальше вообще не может распространяться. В соответствии с теорией относительности ничто не может перемещаться быстрее света. А значит, если уж свету не удаётся вырваться из ловушки, это не дано и чему-либо иному. Всё будет притянуто назад гравитационным полем. Так что существует совокупность событий, область пространства-времени, из которой ничто не способно выбраться, чтобы достичь удалённого наблюдателя. Эту область мы сегодня называем чёрной дырой. А её границу — горизонтом событий. Она совпадает с тем местом, начиная с которого световые лучи не могут вырваться из чёрной дыры.
Для понимания того, что мы увидели бы, если бы могли наблюдать звёздный коллапс и формирование чёрной дыры, следует вспомнить, что в теории относительности нет абсолютного времени. Каждый наблюдатель имеет свой собственный счёт времени. Для находящегося на звезде время будет отличаться от времени удалённого наблюдателя из-за влияния гравитационного поля звезды. (Этот эффект может быть измерен на Земле в ходе эксперимента с часами, располагающимися на вершине и возле основания водонапорной башни.) Предположим, что отчаянный астронавт каждую секунду — по его часам — шлёт сигнал с поверхности коллапсирующей звезды на борт космического корабля, который огибает звезду по круговой орбите. В какой-то момент, допустим в одиннадцать по его часам, радиус сжимающейся звезды становится меньше критического, при котором гравитационное поле усиливается настолько, что сигналы больше уже не достигают корабля на орбите.
Люди на борту корабля отметят, что по мере приближения 11 часов интервалы между последовательными сигналами астронавта сделаются всё длиннее и длиннее. Впрочем, эффект будет незначителен до 10:59:59. Между сигналами, отправленными по часам астронавта в 10:59:58 и 10:59:59, для наблюдателей на орбите пройдёт чуть больше секунды, но сигнала, поданного в 11:00:00, пришлось бы ожидать вечно. Световые волны, испущенные поверхностью звезды
Временной интервал между прибытием последовательных волн на борт корабля будет удлиняться и удлиняться, а свет звезды — делаться всё краснее и тусклее. Рано или поздно звезда померкнет настолько, что уже не будет видна с корабля. Только и останется что чёрная дыра в космосе. Звезда тем не менее продолжит оказывать такое же, как и прежде, гравитационное воздействие на корабль. Потому что она всё ещё видима с корабля, по крайней мере в принципе. Просто под влиянием гравитационного поля свет её претерпевает столь значительное красное смещение, что она не воспринимается органами человеческого зрения. Однако красное смещение не воздействует на само гравитационное поле. И корабль продолжает кружить возле чёрной дыры.
Работа, проделанная Роджером Пенроузом и мною между 1965 и 1970 гг., показала, что в соответствии с общей теорией относительности внутри чёрных дыр должна существовать особая точка, сингулярность с бесконечной плотностью вещества. Это очень напоминает Большой Взрыв, начало времени, с той лишь разницей, что для коллапсирующей звезды и астронавта это было бы концом времени. Все законы нашей науки и наша способность предсказывать будущее разбиваются о сингулярность. Впрочем, наблюдатель, оставшийся за пределами чёрной дыры, не испытает на себе последствий краха предсказуемости, потому что ни свет, ни какой-нибудь иной сигнал не может прорваться к нему из сингулярности.
Этот удивительный факт надоумил Роджера Пенроуза предложить гипотезу космической цензуры, которую можно перефразировать следующим образом: «Бог не терпит голой сингулярности». Иными словами, сингулярности, порождаемые гравитационным коллапсом, возникают только в местах вроде чёрных дыр, где они благопристойно скрыты от постороннего взгляда горизонтом событий. Если быть точным, это то, что называется слабой гипотезой космической цензуры: она защищает наблюдателей за пределами чёрной дыры от любых последствий краха предсказуемости, который происходит внутри сингулярности. Но это никак не поможет несчастному астронавту, который канул в чёрную дыру. Пощадит ли Бог и его стыдливость?
Существует несколько решений уравнений общей теории относительности, которые позволяют нашему астронавту увидеть голую сингулярность. Вместо того чтобы угодить в неё, астронавт может попасть в так называемую кротовую нору и оказаться в другой области Вселенной. Это открывало бы большие возможности для путешествий в пространстве и времени, но, к несчастью, такие решения, похоже, могут оказаться весьма неустойчивыми. Малейшая помеха, такая как присутствие астронавта, способна изменить их настолько, что астронавт не разглядит сингулярности, пока не угодит в неё, и его время закончится. Иными словами, сингулярность всегда лежит в его будущем и никогда — в прошлом.
Сильный вариант гипотезы космической цензуры постулирует, что в реалистическом решении сингулярность всегда лежит или целиком в будущем (как сингулярности гравитационного коллапса), или целиком в прошлом (как Большой Взрыв). Весьма хотелось бы надеяться, что тот или иной вариант космической цензуры имеет смысл, поскольку нельзя исключать, что вблизи голых сингулярностей возможны путешествия в прошлое. Подобная возможность заманчива для писателей-фантастов, однако она означает, что ни один человек не может быть спокоен за свою жизнь. Некто способен попасть в прошлое и убить кого-либо из ваших родителей, когда вы ещё не зачаты.