Чтение онлайн

на главную - закладки

Жанры

Термодинамика реальных процессов
Шрифт:

 4. Вторые законы симметрии структуры третьего и более высоких порядков.

Перекрестные коэффициенты пропорциональности СР , являющиеся множителями при изменениях интенсиалов в уравнении (144), обладают свойством симметрии, которое обнаруживается при сопоставлении правых частей равенств (145). Имеем

СР1112 = СР1121 = СР1211 = СР2111 ;

СР1122 = СР1212 = СР1221 = СР2112 = СР2121 = СР2211 ; (179)

СР1222 = СР2122 = СР2212 = СР2221 .

Эти соотношения очень похожи на уравнения (89).

Они представляют собой уравнения второго закона симметрии структуры третьего порядка.

Если выразить коэффициенты пропорциональности СР через интенсиалы, то можно продолжить цепочку законов симметрии и получить новые, более тонкие свойства DР и т.д. Рассматриваемая вторая цепочка законов в совокупности с предыдущей, определяемой третьим и четвертым началами, свидетельствует об исключительном разнообразии свойств (признаков) симметрии в природе. Это разнообразие многократно расширяется с ростом числа степеней свободы системы.

Как видим, обсуждение пятого и шестого начал с позиций ОТ позволяет обнаружить у вещества и его поведения новые интересные свойства. Прежде всего это касается всеобщей связи явлений, обусловленной универсальным взаимодействием и нашедшей свое выражение в специфических особенностях таких характеристик, как экстенсор, интенсиал, емкость, сопротивление, структура и т.д. Однако самое замечательное следует усмотреть в том, что пятое и шестое начала раскрывают перед нами еще одну сторону физического механизма формирования симметричных структур.

Действительно, если третье и четвертое начала определяют через интенсиалы силовые особенности процесса объединения порций разнородных веществ в симметричные ансамбли, то пятое и шестое обеспечивают транспорт этих веществ к месту их объединения. Подвод необходимых веществ тоже регламентируется определенными законами симметрии и требует для своего осуществления соответствующей симметричной внутренней организации самих формирующихся структур. При этом очень важно подчеркнуть, что имеет место полное согласование составов сформированных и подводимых ансамблей. Это прямо следует из сопоставления уравнений третьего и пятого начал.

Другими словами, пятое начало играет роль «извозчика», приводимого в движение силовыми свойствами сформированных ансамблей. Этот «извозчик» строго следит за тем, чтобы вещества доставлялись в нужных количествах и направлениях, точно соответствовали природе потребителя и при объединении с последним образовали транспортные магистрали, вполне отвечающие природе самого «извозчика». Шестое начало подсказывает состав транспортируемых веществ и управляет эстетической стороной строительства магистралей, то есть требует, чтобы архитектура магистралей удовлетворяла высоким вкусам самой природы, основанным на принципах гармонии и симметрии.

Шестое начало - второй закон симметрии структуры первого порядка - определяет самые крупные и поэтому самые заметные архитектурные элементы сооружений. Менее бросающиеся в глаза, но более многочисленные элементы характеризуются вторыми законами структуры и симметрии структуры второго порядка. Еще более тонкие и крайне многочисленные «архитектурные излишества»

выявляются при анализе последующих звеньев второй цепочки законов симметрии третьего и более высоких порядков.

Однако первая и вторая цепочки законов далеко не исчерпывают всех возможных признаков (законов) симметрии в природе. На самом деле этих законов значительно больше, в чем нетрудно убедиться, если обратить внимание на другие так называемые характеристические функции и дифференциальные тождества термодинамики [ТРП, стр.170-171].

 5. Третьи законы структуры и ее симметрии.

С помощью третьего аргумента (Е1 ; Р2) перечня (160) получается следующая характеристическая функция:

А3 = F3(Е1 ; Р2) Дж (180)

 или

dА3 = (?А3/?Е1)Р2 dЕ1 + (?А3/?Р2)Е1 dР2 (181)

С учетом размерности величина А3 выбирается так, чтобы соблюдались требования

Р1 = (?А3/?Е1)Р2 ; Е2 = (?А3/?Р2)Е1 (182)

Тогда из выражений (181) и (182) находим

dА3 = Р1dЕ1 + Е2dР2 Дж (183)

Эта функция сочетает в себе слагаемые уравнений (162) и (166), она реально существует и имеет вполне определенный физический смысл. В термодинамике применительно к термомеханической системе функция А3 именуется энтальпией, если индекс 1 относится к термической, а индекс 2 - к механической степени свободы; функцию ввел Гиббс, термин принадлежит Гельмгольцу. Энтальпия обычно обозначается буквой I и конструируется следующим образом [18, с.182]:

I = U + pV Дж (184)

dI = dU + pdV + Vdp = TdS + Vdp Дж (185)

Физический смысл энтальпии легко выясняется, если рассмотреть взаимодействие системы и окружающей среды в условиях, когда р = const (dp = Q). При этом из формулы (185) получаем

dI = TdS

Следовательно, энтальпия численно равна количеству переданного тепла (совершенной термической работе) в изобарном процессе взаимодействия (при постоянном давлении).

Связь между энтальпией и свободной энтальпией определяется формулами (167) и (184). Имеем

Ф = I – TS (186)

dФ = dI – TdS – SdT (187)

Для определения интенсиала Р1 и экстенсора Е2 , входящих в уравнение (183) и играющих роль функций, воспользуемся тем же аргументом (?1 ; Р2) и составим равенства типа прежних (53), (54), (99) и (100). В результате получаются следующие смешанные уравнения состояния [18, с. 82]:

Р1 = f1(?1 ; Р2) (188)

Е2 = f2(?1 ; Р2)

 или

dР1 = АР11dЕ1 + КРР12dР2 (189)

dЕ2 = АЕЕ21dЕ1 + К22dР2

 где

АР11 = (?Р1/?Е1)Р2 ; К22 = (?Е2/?Р2)Е1 ; (190)

КРР12 = (?Р1/?Р2)Е1 ; АЕЕ21 = (?Е2/?Е1)Р2 .

функции f1 и f2 в уравнениях (53), (99) и (188) имеют разный смысл.

В новых уравнениях коэффициенты взаимности КРР12 и АЕЕ21 равны между собой. Для установления этого факта продифференцируем равенства (182) по Е1 и Р2 . Имеем

(?Р1/?Е1)Р2 = ?2А3/?Е21 ; (?Е2/?Р2)Е1 = ?2А3/?Р22 (191)

(?Р1/?Р2)Е1 = ?2А3/(?Е1?Р2) ; (?Е2/?Е1)Р2 = ?2А3/(?Р2?Е1) (192)

Сопоставление правых частей последних выражений и сравнение их с равенствами (190) позволяет написать соотношение

Поделиться:
Популярные книги

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Польская партия

Ланцов Михаил Алексеевич
3. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Польская партия

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл