Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Помимо этих возможностей, остаётся ещё и другая форма, согласующаяся с объяснением открытия Хаббла с помощью симметричного расширяющегося пространства. Хотя это трудно изобразить в трёх измерениях, но, как и в примере сферического пространства, имеется хорошая двумерная модель: бесконечный вариант картофельного чипса «Принглс». Эта форма, часто обозначаемая как седло, является некоей противоположностью сферы: в то время как сфера симметрично выпукла наружу, седловина симметрично вогнута в себя, как показано на рис. 8.6. Используя немного математической терминологии, скажем, что сфера имеет положительную кривизну(выпукла наружу), седловина имеет отрицательную кривизну(вогнута в себя), а плоское пространство — как бесконечное, так и конечное — не имееткривизны (не выпукло и не имеет седловидной формы). [57]
57
Точно
Рис. 8.6.Использование двумерных аналогий для полностью симметричных пространств, в которых вид из любой точки пространства такой же, как и из любой другой, с тремя различными типами кривизны. ( а) Положительнаякривизна, соответствующая однородной выпуклости, как у сферы. ( б) Нулеваякривизна, которая отвечает полному отсутствию выпуклости, как на бесконечной плоскости или конечном экране видеоигры. ( в) Отрицательнаякривизна, которая отвечает седловидной поверхности
Исследователи доказали, что этот список — однородно положительная, отрицательная или нулевая — исчерпывает возможные виды кривизны для пространства, которое соответствует требованию симметрии между всеми положениями и всеми направлениями. И это действительно потрясающе. Мы говорим о форме всей Вселенной— о чем-то, для чего имеется бесчисленное число возможностей. Однако, призвав великую силу симметрии, исследователи оказались в состоянии резко снизить число возможностей. Так что если вы позволите симметрии направлять ваш ответ, и ваш полуночный интервьюер даст вам несколько шансов для ответа, вы будете в состоянии принять его вызов. {112}
И всё же вы можете спросить: почему мы пришли к нескольким возможным формам для ткани пространства? Мы обитаем в одной Вселенной, так почему мы не можем точно указать на единственную форму? Только перечисленные формы гарантируют, что каждый наблюдатель, независимо от того, где во Вселенной он находится, должен видеть в больших масштабах одинаковый космос. Но такое применение симметрии, хотя и сильно ограничивает отбор, не даёт возможности полностью решить задачу и дать единственный ответ. Для этого нам нужны уравнения общей теории относительности Эйнштейна.
В качестве входных данных уравнения Эйнштейна принимают количество материи и энергии во Вселенной (предполагая, опять же из соображений симметрии, что они распределены равномерно), а на выходе они дают кривизну пространства. Сложность в том, что на протяжении многих десятилетий астрономы не могли прийти к согласию, сколько на самом деле имеется материи и энергии. Если вся материя и энергия во Вселенной была бы однородно распределена по пространству и если после этого оказалось бы, что превышена так называемая критическая плотность, которая составляет около 10 – 23г на каждый кубический метр [58] — около пяти атомов водорода на кубический метр, — уравнения Эйнштейна дали бы положительную кривизну пространства; если бы плотность оказалась меньше критической, уравнения привели бы к отрицательной кривизне; если плотность была бы в точности равна критической, уравнения показали бы, что пространство не имеет общей кривизны. В то время как эта наблюдательная проблема ещё ждёт определённого решения, наиболее точные данные склоняют стрелку в сторону отсутствия кривизны — плоской формы пространства (но вопрос о том, может ли кролик Энерджайзер всегда двигаться в одном направлении и исчезнуть в темноте или однажды он замкнёт круг и появится у вас за спиной — простирается ли пространство бесконечно или зациклено подобно видеоэкрану, — всё ещё полностью открыт). {113}
58
Сегодня материи во Вселенной больше, чем излучения, так что критическую плотность удобно выражать в единицах,
Даже без окончательного ответа на вопрос о форме космической ткани совершенно ясно, что симметрия является существеннейшим понятием, позволяющим осмысливать пространство и время применительно ко Вселенной в целом. Без привлечения силы симметрии мы бы застряли в самом начале.
Космология и пространство-время
Теперь мы можем проиллюстрировать космическую историю, объединив концепции расширяющегося пространства и описание пространства-времени в виде буханки хлеба (блока), как в главе 3. Вспомним, что в образе буханки каждый ломтик — хотя он и двумерный — представлял всё трёхмерное пространство в отдельный момент времени с точки зрения одного определённого наблюдателя. Другие наблюдатели разрезают блок пространства-времени под другими углами, в зависимости от их относительного движения. В примерах, с которыми мы сталкивались ранее, мы не принимали во внимание расширение пространства, а, напротив, представляли, что ткань космоса фиксирована и неизменна во времени. Теперь мы можем уточнить те примеры, включив космологическую эволюцию.
Для этого рассмотрим точку зрения наблюдателей, которые покоятся по отношению к пространству, — наблюдателей, движение которых возникает исключительно за счёт космического расширения, точно так же, как у приклеенных к воздушному шару монеток с изображениями Линкольна. Снова, хотя наблюдатели двигаются друг относительно друга, среди всех таких наблюдателей имеется симметрия — их часы идут синхронно, — так что они нарезают блок пространства-времени в точности одинаково. Только относительное движение, добавленное к движению, связанному с расширением пространства, только относительное движение черезпространство, как нечто противоположное движению из-за расширения пространства, будет приводить к рассинхронизации часов и расположению их сечений блока пространства-времени под разными углами. Следует также указать точную форму пространства, и в целях сравнения мы рассмотрим некоторые из возможностей, обсуждавшихся выше.
Простейший пример — это плоская и конечная форма пространства, форма видеоигры. На рис. 8.7 апоказано одно сечение такой Вселенной, схематическое изображение, которое вы должны рассматривать как представляющее всё пространство прямо сейчас. Для простоты представим, что наша Галактика, Млечный Путь, находится в середине фигуры, но будем помнить, что нет местоположения, которое каким-либо образом было бы выделено по сравнению с любыми другими. Даже края являются иллюзией. В верхней части рисунка пространство не заканчивается, поскольку вы можете пройти через край и появиться снова внизу; аналогично, слева пространство также не заканчивается, поскольку вы можете пересечь левый край и появиться снова справа. В соответствии с астрономическими наблюдениями каждая сторона должна распространяться по меньшей мере на 14 млрд световых лет (около 132 млрд трлн км) от своей центральной точки, но может быть и намного больше.
Рис. 8.7.( а) Схематическое изображение, представляющее всё пространство в настоящий момент, в предположении, что пространство плоское и конечное по протяжённости, т. е. имеющее форму экрана видеоигры. Заметьте, что галактика вверху справа продолжается через край вверху слева. ( б) Схематическое представление изображения всего пространства в его эволюции во времени. Для ясности выделено несколько временных слоёв. Отметим, что полный размер пространства и расстояние между галактиками уменьшаются, по мере того как мы смотрим всё дальше назад, вглубь времени
Отметим, что сейчас мы не можем буквально видеть звёзды и галактики, как нарисовано на данном слое настоящего, поскольку, как мы обсуждали в главе 5, для света, испущенного любым объектом прямо сейчас, требуется время, чтобы достичь нас. А свет, который мы видим, когда смотрим вверх в ясную тёмную ночь, испущен очень давно — миллионы и даже миллиарды лет назад — и только сейчас завершил долгий путь к Земле, попав в телескоп и позволив нам восхититься чудесами глубокого космоса. Поскольку пространство расширяется, много лет назад, когда этот свет был испущен, Вселенная была намного меньше. Это показано на рис. 8.7 б, на котором наш текущий слой настоящего помещён на правом краю буханки и показана последовательность сечений, которые изображают нашу Вселенную во всё более ранние моменты времени (левее слоя настоящего). Как вы можете видеть, общий размер пространства и расстояния между отдельными галактиками уменьшаются, когда мы рассматриваем Вселенную во всё более ранние моменты времени.