Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
138. Классический алгоритм для задач нахождения кратчайшего пути разработан Эдсгером Дейкстрой. За информацией обращайтесь по адресуСтивен Скиена разместил в своем блоге анимированную инструкцию алгоритма Дейкстры, см. http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html.
139. Восхитительные примеры историй в шести словах даны на страницахhttp://en.wikipedia.org/wiki/Six-Word_Memoirs.
29. Анализируй это!
140. Анализ возник в связи с необходимостью укрепить логические основы исчисления. Уильям Данхэм прослеживает его историю на основе работ одиннадцати гениальных математиков, от Ньютона до Лебега, в книге W. Dunham, The Calculus Gallery (Princeton University Press, 2005). Эта книга содержит точные математические
141. Об истории ряда Гранди 1 – 1 + 1 – 1 + 1 – 1 + ... его дальнейшем математическом статусе и его роли в математическом образовании говорится в статье «Википедии», опирающейся на тщательно отобранные источники, со ссылками по темам. Все это можно найти на странице Grandi’s series («Ряды Гранди») по адресу http://en.wikipedia.org/wiki/Grandi’s_series.
142. Для получения четкого представления о теореме Римана см. Dunham, The Calculus Gallery, рр. 112–115.
143. Если знакочередующийся ряд сходится условно, это означает, что он сходится, но не абсолютно (сумма абсолютных значений его членов не сходится). Для рядов, подобных гармоническому, можно изменять порядок членов, чтобы получить любое действительное число. Таковы шокирующие следствия теоремы Римана о перестановке членов условно сходящегося ряда. Поэтому сумма сходящегося ряда, если он не сходится абсолютно, может не соответствовать нашим интуитивным ожиданиям.
В случае абсолютно сходящегося ряда все перестановки ряда сходятся к одному значению. Что удивительно удобно. Это означает, что абсолютно сходящийся ряд ведет себя как конечная сумма. В частности, он подчиняется коммутативному закону сложения. Вы можете переставить члены ряда, как вам захочется, и получите тот же ответ. Более подробно о сходимости рядов, см.и http://en.wikipedia.org/wiki/Absolute_convergence.
Прим. ред.: Простая книга о сходимости рядов: Воробьев Н. Н. Теория рядов. М. : Наука, 1986.
144. Выдающаяся книга Tom Korner’s Fourier Analysis (Cambridge University Press, 1989) представляется как «витрина магазина» идей, методов, приложений и истории анализа Фурье. Уровень математической строгости высок, хотя книга остроумная, элегантная и приятно занимательная. Для получения представления о работе Фурье и ее связи с музыкой см. M. Kline, Mathematics in Western Culture (Oxford University Press, 1974), chapter 19.
Прим. ред.: Литература по анализу Фурье и рядам Фурье: Толстов Г. П. Ряды Фурье. М. : Наука, 1980; Эдвардс Р. Ряды Фурье в современном изложении: в 2 т. М. : Мир, 1985.
145. Феномен Гиббса и его нелегкая история рассматриваются в книге E. Hewitt and R. E. Hewitt, The Gibbs-Wilbraham phenomenon: An episode in Fourier analysis, Archive for the History of Exact Sciences, Vol. 21 (1979), pp. 129–160.
146. Как феномен Гиббса может повлиять на MPEG и JPEG технологии сжатия цифрового видео, см. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/sab/report.html.
В MРТ-сканировании эффект Гиббса называется усеченным сигналом Гиббса:Методы для работы с этим артефактом см. T. B. Smith and K. S. Nayak, MRI artifacts and correction strategies, Imaging Medicine, Vol. 2, № 4 (2010), рр. 445–457, доступно на http://mrel.usc.edu/pdf/Smith_IM_2010.pdf.
147. Аналитики XIX века нашли математическое обоснование феномена Гиббса. Для функции (или в настоящее время изображения), отображающей края или другие устранимые точки с простым разрывом, было доказано, что частичные суммы синусоидальных волн сходятся в этих точках к пределу поточечно, но неравномерно. Поточечная сходимость означает,
В этом случае неравномерная сходимость обусловлена «патологией» знакочередующегося гармонического ряда, чьи члены появляются в виде коэффициентов Фурье для пилообразной волны. Как уже обсуждалось выше, знакочередующиеся гармонические ряды сходятся, но только благодаря грандиозному сокращению членов с противоположными знаками. Если бы ряд состоял исключительно из положительных (абсолютных) значений его членов, то он был бы расходящимся, а сумма стремилась бы к бесконечности. Вот почему говорят, что знакочередующийся гармонический ряд сходится условно, но не абсолютно. Затем такая форма сходимости заражает соответствующий ряд Фурье и приводит к тому, что он сходится неравномерно; тут и возникает феномен Гиббса с его насмешливо поднятыми у края пальцами.
В противоположность этому, когда коэффициенты рядов Фурье абсолютно сходятся, связанные с ними ряды Фурье равномерно сходятся к исходной функции. И феномен Гиббса не возникает. Для получения дополнительной информации см.и http://en.wikipedia.org/wiki/Gibbs_phenomenon.
Мораль наших рассуждений такова: нужно быть осторожными с условно сходящимися рядами. У них сходимость все же недостаточно хорошая. Чтобы бесконечный ряд во всех отношениях вел себя как конечная сумма, он должен быть более жестко ограничен, чего не может обеспечить условная сходимость. Требование абсолютной сходимости приводит к тому, что мы интуитивно ожидаем как для исходного ряда, так и для связанного с ним ряда Фурье.
30. Отель Гильберта
148. Более подробную информацию о Канторе, в том числе о математических, философских и богословских спорах, связанных с его работой, см. J. W. Dauben, Georg Cantor (Princeton University Press, 1990).
Прим. ред.: О Георге Канторе и его научном наследии см. Катасонов В. Н. Боровшийся с бесконечным: философско-религиозные аспекты генезиса теории множеств Г. Кантора. М. : Мартис, 1999; Пуркет В., Ильгаудс Х. И. Георг Кантор / Пер. с нем. Н. М. Флайшера. Харьков : Основа, 1991.
149. Если вы еще не читали, рекомендую прочесть удивительный бестселлер «Логикомикс», потрясающе творческий и «графический» роман о теории множеств, логике, бесконечности, безумии и стремлении к математической истине: A. Doxiadis and С. Н. Papadimitriou, Logicomix (Bloomsbury, 2009). Главный герой — Бертран Рассел, но появление Кантора, Гильберта, Пуанкаре и многих других незабываемо.
150. Классическая биография Давида Гильберта — трогательный и неакадемичный рассказ о его жизни, работе и эпохе, см. C. Reid, Hilbert (Springer, 1996). Вклад Гильберта в математику слишком велик, чтобы перечислять здесь все достижения, но, вероятно, величайшее из них — это коллекция из двадцати трех тогда еще не решенных задач, которые, по мнению ученого, могли бы сформировать ход развития математики в ХХ веке. Продолжение истории о значимости задач, предложенных Гильбертом, и людях, которые решили кое-какие из них, см. B. H. Yandell, The Honors Class (A K Peters, 2002). Некоторые из этих проблем до сих пор остаются неразрешенными.