UNIX: разработка сетевых приложений
Шрифт:
8. SCTP позволяет приложению настраивать транспортный уровень по своим потребностям, причем настройка выполняется для каждой ассоциации в отдельности. Эта гибкость в сочетании с универсальным набором значений по умолчанию (для приложений, не нуждающихся в тонкой настройке транспортного уровня) дает приложению нечто большее, нежели оно могло получить при работе с TCP.
SCTP лишен двух особенностей TCP. Одной из них является состояние неполного (половинного) закрытия соединения. Это состояние возникает, когда приложение закрывает свой конец соединения, но разрешает собеседнику отправлять данные, а само принимает их (мы обсуждали это состояние в разделе 6.6). Приложение входит в это состояние для того, чтобы сообщить собеседнику, что отправка данных завершена.
SCTP не поддерживает и такую функцию TCP, как обработка внеочередных данных (urgent data). Для доставки срочных данных в SCTP можно использовать отдельный поток, однако это не позволяет в точности воспроизвести поведение TCP.
Для приложений, ориентированных на передачу потока байтов, переход на SCTP может оказаться невыгодным. К таким приложениям относятся
В заключение следует сказать, что многим программистам стоит задуматься о переносе своих приложений на SCTP, когда этот протокол станет доступен на их Unix-платформе. Однако чтобы эффективно использовать специальные функции SCTP, нужно хорошо разбираться в них. Пока этот протокол не будет распространен повсеместно, вам может быть выгоднее не уходить от TCP.
23.13. Резюме
В этой главе мы изучили функцию автоматического закрытия ассоциации SCTP и исследовали, каким образом она может быть использована для ограничения неактивных соединений через сокет типа «один-ко-многим». Мы написали простую функцию, при помощи которой приложение может получать большие сообщения, используя механизм частичной доставки. Мы узнали, каким образом приложение может декодировать уведомления о событиях, происходящих на транспортном уровне. Мы достаточно коротко рассказали о том, как процесс может отправлять неупорядоченные данные, связывать сокет с подмножеством адресов, получать адреса собеседника и свои собственные, а также преобразовывать IP-адрес в идентификатор ассоциации.
Периодическая проверка соединения для ассоциаций SCTP включена по умолчанию. Мы научились управлять этой функцией посредством простой подпрограммы, которую сами же написали. Мы научились отделять ассоциацию при помощи системного вызова
Упражнения
1. Напишите клиент для тестирования интерфейса частичной доставки из раздела 23.3.
2. Каким образом можно задействовать механизм частичной доставки, если не отправлять очень больших сообщений?
3. Перепишите сервер, использующий механизм частичной доставки, таким образом, чтобы он умел обрабатывать соответствующие уведомления.
4. Каким приложениям пригодится механизм передачи неупорядоченных данных? А каким он не нужен? Поясните.
5. Каким образом можно протестировать сервер, связывающийся с подмножеством IP-адресов узла?
6. Предположим, ваше приложение работает в частной сети, причем конечные точки находятся в одной локальной сети. Все серверы и клиенты являются многоинтерфейсными узлами. Каким образом следует настроить параметры повторной передачи, чтобы обнаруживать
Глава 24
Внеполосные данные
24.1. Введение
Ко многим транспортным уровням применима концепция внеполосных данных( out-of-band data), которые иногда называются срочными данными( expedited data). Суть этой концепции заключается в том, что если на одном конце соединения происходит какое-либо важное событие, то требуется быстро сообщить об этом собеседнику. В данном случае «быстро» означает, что сообщение должно быть послано прежде, чем будут посланы какие-либо обычные данные (называемые иногда данными из полосы пропускания), которые уже помещены в очередь для отправки, то есть внеполосные данные имеют более высокий приоритет, чем обычные данные. Для передачи внеполосных данных не создается новое соединение, а используется уже существующее.
К сожалению, когда мы переходим от общих концепций к реальной ситуации, почти в каждом транспортном протоколе имеется своя реализация внеполосных данных. В качестве крайнего примера можно привести UDP, где внеполосных данных нет вовсе. В этой главе мы уделим основное внимание модели внеполосных данных TCP. Мы приведем различные примеры обработки внеполосных данных в API сокетов и опишем, каким образом внеполосные данные используются приложениями Telnet, Rlogin и FTP. За пределами очерченного круга удаленных интерактивных приложений найти применение внеполосным данным довольно сложно.
24.2. Внеполосные данные протокола TCP
В протоколе TCP нет настоящих внеполосных данных. Вместо этого в TCP предусмотрен так называемый срочный режим [4] ( urgent mode), к рассмотрению которого мы сейчас и приступим. Предположим, процесс записал Nбайт данных в сокет протокола TCP, и эти данные образуют очередь в буфере отправки сокета и ожидают отправки собеседнику. Ситуацию иллюстрирует рис. 24.1. Байты данных пронумерованы от 1 до N.
4
Иногда переводится как «экстренный режим» или «режим срочности». — Прим. перев.
Рис. 24.1. Буфер отправки сокета, содержащий данные для отправки
Теперь процесс отправляет один байт внеполосных данных, содержащий символ ASCII
TCP помещает данные в следующую свободную позицию буфера отправки сокета и устанавливает указатель на срочные данные (или просто срочный указатель [5] — urgent pointer) для этого соединения на первую свободную позицию. Этот буфер показан на рис. 24.2, а байт, содержащий внеполосные данные, помечен буквами
5
Также (ошибочно) используется термин «указатель срочности». — Примеч. перев.