УРОЖАИ И ПОСЕВЫ
Шрифт:
Самодовольство и обновление
я поддался бы этому сильнейшему влечению: пустился бы вперед, на зов «мотива», оставив позади все, что цеплялось за полы плаща!
Ошибусь ли, если скажу: что бы ни случилось, чувство красоты в математике никогда не изменяло мне в уединении рабочего кабинета? Что самодовольство, так часто врывавшееся в мои отношения с собратьями по ремеслу, не притупило во мне этой восприимчивости, что до самого моего «пробуждения» в 1970 г. она оставалась прежней? Ведь с годами, в ежедневном соприкосновении с математикой, некое «чутье» даже становится тоньше. Когда мы ближе знакомимся с теми или иными вещами, нам иногда удается, опираясь на опыт, угадывать о них то, чего мы еще не знаем наверное. Этот опыт (или зрелость: чутье, о котором я говорил, - самое заметное из ее проявлений) сродни открытости к красоте, к истинной природе вещей. Мы копим его в минуты «откровения» и в то же время с его помощью оттачиваем свою чувствительность к красоте, остроту восприятия.
Но что до той же открытости на уровне человеческих взаимоотношений (более конкретно: отношений с коллегами в нашей среде), с этим вопросом мне еще предстоит разобраться. Сохранил ли я ее за все эти годы, не исчезла ли она из моей души, отравленной самолюбием?
Раздумывая об этом, я, как обычно, не в силах нащупать сколько-нибудь осязаемого образа: ни одного подходящего события, которое я мог бы описать в подробностях, не осталось у меня в памяти. На месте воспоминаний - сплошной туман; ничего конкретного, только общее впечатление. Что же, попытаемся передать его на словах. Похоже, что речь идет об определенной внутренней позиции, превратившейся в конце концов в мое второе «я». Она давала о себе знать всякий раз, когда мне попадалась на глаза математическая новость более или менее «по моей части». (Не то, чтобы я приобрел эту позицию с годами: скорее, она была во мне заложена. Это свойство характера, как будто сравнительно безобидное; я уже как-то о нем упоминал.) Выражалось это в том, что, знакомясь с новым утверждением, я никогда не соглашался сразу прочесть (или выслушать) его доказательство. Я всегда старался сначала сопоставить это утверждение с тем, что мне уже известно из этой области, и проверить, не окажется ли оно очевидным в привычном контексте. Нередко мне таким образом удавалось переформулировать утверждение так, чтобы оно стало более общим или более точным; зачастую достигалось и то и другое одновременно. И лишь в том случае, если у меня не получалось «пристроить» его посреди моих представлений о ситуации, опираясь на мой собственный опыт, я был готов (подчас чуть ли не против воли!) ознакомиться с остальным материалом в поисках той самой, все определяющей причины или, по крайней мере, доказательства (неважно, содержится оно там в явном виде или нет).
Именно эта особенность моего подхода к математике, мне кажется, в свое время выделяла меня среди всех прочих членов группы Бурбаки. По ее вине я никогда не умел, как они, полностью включиться в совместную работу. Эта же особенность, бесспорно, всегда была заметным препятствием в моей работе с учениками; думаю, что все они это ощущали. Впрочем, сейчас, с годами, я понемногу научился с этим справляться.
И все же, отсюда видно, что мне недостает душевной открытости. Получается, что я как бы настроен на определенную волну, открыт лишь частично: все, что попадает «не в струю», мой ум принимает не всегда, вынужденно и с большой неохотой. В том, как я выбираю тему для своих математических занятий (и рассчитываю, сколько времени уделить разбору той или иной неожиданной информации), намеренная установка на «частичную закрытость» во мне сегодня сильна, как никогда. Она даже необходима: иначе я не смог бы последовать зову, сильнее всего влекущему меня за собой, не отдавая всей своей жизни на съедение госпоже Математике.
Из моего «тумана», однако, можно почерпнуть еще кое-что в придачу к этой особенности, которую я уже начал в себе замечать несколько лет назад (лучше поздно, чем никогда!). Похоже, что в какой-то момент это стало для меня делом чести: неужели, черт побери, я не смогу «взять за рога» это утверждение раньше, чем его успеют произнести вслух! Если автором утверждения был какой-нибудь неизвестный талант, тут примешивался еще другой оттенок: хватит и того, что я (уж кто-кто, а я-то должен понимать в этом толк!) сам до этого не додумался! Довольно часто я действительно успевал додуматься раньше, и не только до этого утверждения; тогда я чувствовал себя совершенно иначе. Кажется, я всем своим видом говорил автору: «Прекрасно; теперь можете катиться к чертовой бабушке. Вернетесь с чем-нибудь поинтереснее.»
Именно так я держал себя в истории с «молокососом, забравшимся
Самодовольство и обновление
в мой огород». Я даже не знаю, набрел ли он тогда в своей работе на какие-нибудь интересные подробности, которые я бы в свое время, составляя «секретные наброски» будущих трудов, упустил из виду. Это, впрочем, не так уж важно{85}. Итак, вопрос о том, как изменилась с годами моя восприимчивость к красоте в математике, наконец, начинает проясняться. Из этой истории видно, что она не осталась прежней - и перемены, по сути своей, достаточно глубоки. Можно сказать, что стоило мне закончить ту или иную работу в математике, как ее красота в моих глазах исчезала. Оставалось лишь честолюбие, которое требовало признания и наград. (При том, что я не всегда удосуживался выбрать время, чтобы опубликовать свою находку, это уже явно было чересчур.) Открытие в математике словно бы становилось моей собственностью, и я искал в нем уже не радости, но обладания. Так иной, познав женщину, становится глух к ее красоте - но, волочась за сотней других, все же не потерпит «соперника». В любви я считал себя выше этого, как будто нарочно стараясь не замечать, что к математике я относился именно так.
Мне кажется, что этот настрой на грубое соревнование в математике («спортивный дух», если можно так выразиться) появился у меня в то время, когда он уже успел достаточно широко распространиться в нашей среде. Не берусь указать точно, когда он проник в наши круги, и не знаю, когда он стал для нас привычен, как воздух (которым дышали и наши ученики, приходя к нам). Могу только предположить, что это произошло где-то в шестидесятые годы; быть может, в конце шестидесятых - начале семидесятых. (Если так, никто из моих учеников не избежал влияния этого настроя; поддаться ли ему, каждый должен был решать для себя!) Чтобы уточнить время, нужно вспомнить еще какие-нибудь конкретные события - но сейчас ничего не приходит мне в голову.
Скромная действительность, по своему обыкновению, разрушает воздушные замки и сводит на нет благородные образы. Мои отношения с математикой и с молодыми учеными вообще на поверку оказались совсем иными, чем я о них думал. К этой мысли я мог бы прийти и раньше, но взамен предпочитал обманывать себя самого, прибегая
к грубым уловкам в меритократическом духе. Создавая эти благородные образы, я брал в расчет лишь свои отношения с учениками (но ведь ученики - гордость математика, успех каждого из них прибавляет ему славы!) и с самыми одаренными молодыми математиками со стороны. Я умел признавать заслуги юных талантов; как и со своими учениками, я обходился с ними на равных, не дожидаясь, пока на них посыплются почести. (Другое дело, что долго ждать не приходилось: «чутье» или есть, или его нет!) Итак, к своим собственным ученикам, к ученикам моих друзей и просто к юным гениям я всегда относился с уважением; все остальные молодые ученые не вызывали у меня решительно никакого интереса. С ними я мог обходиться как угодно, ни о чем не заботясь. Они были не в счет.
Все это так - но, мне кажется, непосредственное общение с человеком всякий раз что-то во мне меняло, хоть и ненадолго. Пожалуй, тот случай с «юным неучем» в известном смысле был исключением. Если молодой ученый подходил ко мне на семинаре или обращался ко мне с письмом, я, по-видимому, как бы брал его под свою защиту - и, естественно, начинал относиться к нему благожелательнее. Тогда находила выход и моя страсть опережать мысли собеседника: я всегда мог посоветовать ему, как можно расширить или углубить тему его исследования. Наверное, в этом случае он ненадолго становился, в какой-то мере, моим учеником. Ему тоже была от этого определенная польза, так что он вполне мог сохранить не самые худшие воспоминания о нашей встрече. (Я был бы рад что-нибудь услышать об этом из первых РУК.)
На этих страницах речь шла прежде всего о моих отношениях с молодыми учеными - хотя проявления моего «спортивного духа», безусловно, этой областью отнюдь не ограничивались. Начинающий математик особенно восприимчив к тому, как видный коллега принимает и оценивает его работу: как психологические, так и чисто практические последствия такого контакта для него могут оказаться весьма серьезными.
41. Этой ночью я отложил перо с чувством настоящего удовлетворения, как человек, который знает, что потратил время не даром! И мне вдруг стало так легко и радостно на душе, что я просто расхохотался веселым, даже чуть-чуть злорадным, смехом озорного мальчишки. Кажется, много ли я сделал - всего лишь взглянул под другим углом на
Самодовольство и обновление
историю, в которой как будто все уже было ясно, разложено по полочкам. А взглянув, я прочел ее по-новому: в контексте моих отношений с математикой как таковой. Этого оказалось достаточно, чтобы миф, которым я столько лет дорожил, развеялся как дым.
Правда, мне и раньше случалось задумываться над своим отношением к математике. Как-то раз два с половиной года назад я провел не одну неделю, если не несколько месяцев, как раз в таких размышлениях. Тогда я начал понимать, что в былые времена я отдавал все свои силы математике не так уж и бескорыстно: мой выбор во многом определяло честолюбие. Но этой ночью мне удалось заметить одну вещь, которая до сих пор от меня ускользала: что я в те годы ревниво относился к своим находкам в математике. И тогда мне пришло на ум еще одно «совсем простенькое» открытие - пришло издалека, из моей первой «ночи медитации» (когда я медитировал, сам о том не подозревая - точь-в-точь как месье Журден у Мольера говорил прозой). Возможно (хоть я и не думал об этом), именно это живое воспоминание, неожиданно вернувшись ко мне, вызвало в моей душе столь бурную радость. Ведь мое давнее открытие словно бы подтвердилось заново, мало того: оно вдруг предстало мне в новом свете. Так бывает и в математике: вдруг, совершенно случайно, набредаешь на то, что обнаружил когда-то давно (не один год назад, быть может), и совсем на другой дороге. Такие встречи всегда приносят душе какое-то особенное, радостное удовлетворение: в эти минуты внутренняя гармония вещей звучит яснее, и наше знание, наше представление о них обновляется.