В погоне за красотой
Шрифт:
После появления специальной теории, когда стало ясно, что всякая энергия обладает инертной массой, были специально поставлены опыты с радиоактивными веществами.
Оказалось, что равенство инертной и тяжелой масс выполняется и для них. То есть энергия обладает и тяжелой массой, точно такой же, как инертная. Короче, тождественное равенство инертной и тяжелой
Вероятно, пока что не очень ясно, какое отношение все это может иметь к геометрии.
Тем не менее единственный этот экспериментальный факт плюс специальная теория относительности, плюс еще одно требование чисто теоретического характера привели Эйнштейна к полному изменению наших представлений о геометрии вселенной — к общей теории.
Мы глухо упомянули о каком-то еще одном требовании. Можно даже сформулировать его. Это как говорят: «требование общей ковариантности законов природы», или, по-другому — «требование физической эквивалентности всех систем отсчета».
Но я отчетливо сознаю, что эти слова ровно ничего не прояснили, и привожу их лишь для некоего успокоения собственной совести.
Проследить сколько-нибудь серьезно, как создавалась общая теория относительности, — задача, непосильная для нас сейчас просто из-за недостатка времени. Создавать же видимость объяснения (это, кстати, всегда сделать легко) довольно недостойно. Я прошу только поверить на слово, что «эквивалентность систем отсчета» — требование, продиктованное в значительной степени эстетикой. Внутренняя логика, красота физической теории вообще были для Эйнштейна одним из самых серьезных доводов в ее пользу.
Возможно, он порой даже переоценивал удельный вес подобных доводов. Но он полагал, что законы вселенной в принципе должны быть очень естественны и логичны, а теоретики часто уродливо искажают их, воспринимая то, что есть на самом деле, как бы в кривом зеркале. Можно, конечно, критиковать его образ мыслей. Вообще нет таких вещей, у которых нельзя было бы найти слабых мест; но то, что для него подобный стиль мышления был хорош, доказывают его результаты. Итак:
«Теория гравитационных полей, построенная на основе теории относительности, носит название общей теории относительности. Она была создана Эйнштейном (и окончательно сформулирована им в 1916 году) и является, пожалуй, самой красивой из существующих физических теорий. Замечательно, что она была построена Эйнштейном чисто дедуктивным путем и лишь в дальнейшем была подтверждена астрономическими наблюдениями». Эта фраза взята из лучшего в современной мировой литературе капитального курса теоретической физики Л. Д. Ландау и Е. М. Лифшица — и это единственное место из всех шести томов, где авторы открыто проявляют эмоции.
Мне кажется, этот факт достаточно красноречив, но при желании можно найти много аналогичных.
Пора вернуться к апокрифам.
На вопрос девятилетнего сына: «Папа, почему, собственно, ты так знаменит?» — Эйнштейн вполне серьезно объяснил: «Видишь ли, когда слепой жук ползет по поверхности шара, он не замечает, что пройденный
Эту фразу часто цитируют. Не следует, естественно, полагать, что она исчерпывает содержание общей теории.
Но, очевидно, сам Эйнштейн считал, что основной результат его работы — коренное изменение наших представлений о геометрии вселенной.
Уже говорилось, что после появления специальной теории погибло представление о независимости геометрических свойств пространства от времени.
Время вошло в геометрию.
Но свойства времени влияли лишь на геометрию движущихся тел.
Для тел, находящихся в покое, оставалась справедливой геометрия Евклида.
В общей теории относительности появился новый физический фактор, определяющий геометрию.
Старый результат — перепутывание и взаимная зависимость свойств пространства и времени, естественно, сохранился. Но этого мало. Оказалось, что геометрические свойства мира в данной точке в данный момент времени определяются гравитационным полем в этой точке.
Очевидно, предыдущая фраза мало что прояснила. Попробуем поэтому сначала сказать несколько более строгих слов, а потом привести предельно грубую, но проясняющую нечто аналогию.
В общей теории относительности мир описывается геометрией Римана.
При этом, когда говорится о «мире» и о его «геометрии», все время подразумевается четырехмерный мир. Время неразрывно запутано с геометрическими свойствами пространства.
Как помните, у Гаусса и Римана определяющей характеристикой была кривизна пространства в данной точке.
А также другая «внутренняя характеристика пространства» — свойства кратчайших (геодезических) линий.
Эти линии физически определяются траекторией, по которой будет двигаться материальная точка, свободная от действия сил.
Согласно Эйнштейну, и кривизна в данной точке и свойства геодезических линий определяются тем, каково гравитационное поле. Тяготение в общей теории относительности занимает исключительное место.
Можно грубо сказать: оно «самое главное» из всех взаимодействий.
Оно определяет геометрию вселенной.
Впрочем, можно сказать и по-другому. Тяготение определяется геометрией.
Как ни говорить, оказалось, что геометрические свойства мира определяются распределением тяготеющих масс.
Еще раз повторим, что, говоря о геометрических свойствах, мы все время подразумеваем четырехмерный мир. Так что на «обычном языке» надо было бы сказать так:
Геометрические свойства и свойства времени полностью определяются распределением масс во вселенной.
И подобно тому как для малых участков двумерной искривленной поверхности приближенно выполнялась геометрия плоскости, малые участки четырехмерного мира можно приближенно рассматривать как области, где кривизна равна нулю.