Ваш радиоприемник
Шрифт:
Ну, а что будет, если пропустить через обмотку реле низкочастотный ток сложной формы, например ток, протекающий в микрофонной цепи во время телефонного разговора?
В некоторые моменты времени, при достаточно сильном токе реле будет срабатывать, а на все остальные изменения тока реагировать вообще не будет. Подключив к контактам такого реле источник тока и нагрузку, мы получим в се цепи лишь беспорядочные прямоугольные импульсы различной длительности, которые в телефоне будут создавать неприятные щелчки. Это уже не точная копня, а какой-то абстрактный портрет нашего сложного усиливаемого сигнала.
Иногда, когда хотят в шутливой форме описать работу усилителя, говорят, что он действительно делает из мухи слона. Что касается чистой энергетики, то это удачное сравнение — реальный усилитель может в сотни и тысячи раз повысить мощность сигнала. Что же касается формы, то есть характера изменения сигнала, то здесь приведенная
Для усиления плавно изменяющихся сигналов, что для этого прежде всего нужно найти устройство, которое позволило бы плавно и с достаточной быстротой управлять электрическим током, подобно тому, как легко и плавно нажимая на педали, мы управляем работой мощного автомобильного двигателя или железной рукой гигантского подъемного крана.
Действие переносится в космос
Очень часто электрический ток сравнивают с потоком воды, а элементы электрической цепи — с различными гидравлическими приборами: батарейку с насосом, нагрузку с турбиной, проводники — с трубами. Продолжая это сравнение, попробуем представить себе управляющий прибор для плавного изменения тока. Такой прибор необходим нам в практике для усиления слабых электрических сигналов — переменных напряжений высокой и низкой частоты.
Что касается потока воды, то для него подобным управляющим прибором является обычный водопроводный кран. Действительно, поворачивая кран, мы перемещаем своеобразную заслонку на пути воды и плавно изменяем мощность потока. Ну, а как создать подобную заслонку для электрического тока? Как ввести ее в проводник? И как перемешать с помощью слабых электрических сигналов? Все эти, казалось бы неразрешимые, задачи довольно просто решаются в электронной лампе.
Ни один уважающий себя кот не полезет за мышкой в ее норку — он будет терпеливо ждать, когда мышь выйдет прогуляться на свежем воздухе. Здесь коту достаточно будет только протянуть лапу — и мышки нет. Учитывая этот убедительный пример, мы тоже не будем стараться проникнуть внутрь проводника для того, чтобы управлять движением зарядов. Выведем эти заряды из проводника «на воздух» и здесь попытаемся поставить на их пути электрическую заслонку [3] . Правда, воздух очень неудачная среда для движения зарядов, ведь он только кажется прозрачным и «пустым». Попробуйте чуть-чуть высунуть руку из движущегося автомобиля, как вы сразу же почувствуете плотность воздуха, его сопротивление — результат столкновения руки с миллиардами молекул различных газов — кислорода, водорода, азота и др.
3
Вы, конечно, знаете, что сейчас научились управлять током в твердом теле. Такое управление осуществляется в полупроводниковых триодах, или, как их еще называют, транзисторах.
И вот здесь-то можно вспомнить о космосе, о том, как огромные спутники и корабли двигаются там, не встречая почти никакого сопротивления — в космосе плотность вещества ничтожно мала. Подобные «космические» условия можно создать и в стеклянном баллоне, если с помощью мощных насосов тщательно откачать из него воздух. В таком безвоздушном пространстве, или, как говорят иначе, в вакууме, электрические заряды смогут двигаться практически без столкновений.
Стеклянный, металлический или керамический баллон, в котором создан вакуум, — это основная деталь самых различных приборов для управления движущимися зарядами. Именно поэтому все эти приборы — телевизионные трубки, электронные микроскопы, усилительные лампы — часто называют вакуумными. Попутно заметим, что из обычной электрической лампочки тоже откачивают воздух, но при этом преследуют совсем другие цели. В состав воздуха входит кислород, из-за которого раскаленная нить может просто-напросто сгореть.
Итак, вакуумный баллон для усилительной электронной лампы у нас уже есть. Теперь остаются сущие «пустяки» — нужно создать в баллоне электрический ток и вставить «заслонку» для управления этим током.
* * *
РАДИОПРИЕМНИК ЗАПОЛНЯЕТ АНКЕТУ
Вот несколько вопросов, с которыми покупатель обычно приходит в радиомагазин: «Какой приемник самый хороший? А чем плохи остальные? И какой же все-таки покупать?..»
О радиоприемнике довольно четко рассказывают его главные характеристики — параметры. Вот некоторые из них.
— Диапазоны принимаемых волн.
— Коэффициент нелинейных искажений (в процентах).
— Полоса воспроизводимых частот (в герцах).
— Номинальная выходная мощность (в ваттах), при которой искажения не превышают нормы.
— Чувствительность, которая характеризует способность приемника усиливать слабые сигналы.
Обычно указывается напряжение (в микровольтах) на входе приемника, при котором выходная мощность составляет не меньше 10 % от номинальной. Чем меньше это напряжение, тем, естественно, лучше чувствительность. Так, например, при чувствительности 50 мкв можно принимать более слабые станции, чем при 200 мкв.
— Избирательность по соседнему каналу (обычно в децибелах) величина, показывающая, во сколько раз ослабляется соседняя станция по сравнению с принимаемой («расстояние» по частоте — 10 кгц).
— Избирательность по зеркальному каналу («расстояние» по частоте — 930 Мгц).
Имеется и целый ряд других параметров, характеризующих уровень фона, эффективность системы АРУ, стабильность частоты гетеродина, потребляемую мощность, степень регулировки тембра и полосы пропускания, уровень собственных шумов и др. Но одна только анкета, пусть даже самая подробная, не может полностью охарактеризовать приемник. Ведь имеются еще и такие важные показатели, как внешний вид, отделка, тембр звучания, удобство управления, надежность… Вот почему даже детально познакомившись с основными параметрами приемника, вы можете без стеснения задавать продавцам, а еще лучше мастерам-ремонтникам, традиционный вопрос: «Так какой же приемник все-таки стоит покупать?»
* * *
Не нарушая герметичности баллона, введем в него с разных сторон два электрода (электродами называют расположенные внутри баллона металлические детали, выполняющие какие-то определенные функции по созданию тока и управлению им), а к их выводам, то есть к той части электродов, которая сквозь стекло выходит из баллона, подключим обычную батарейку. Давайте сразу же договоримся: тот электрод, к которому подключен «плюс» батареи, называется анодом, а тот, к которому подключен «минус», — катодом. Батарею, включенную между анодом и катодом, принято называть анодной, хотя с таким же успехом ее можно было бы назвать катодной или, еще точнее, анодно-катодной. В пашем простом примере анод и катод — это совершенно одинаковые металлические пластинки — их даже можно поменять местами. В настоящей лампе анод и катод устроены совершенно по-разному.
После подключения к электродам анодной батареи в баллоне появится ток. Электроны будут вылетать из катода и двигаться к аноду — отрицательно заряженный электрон стремится к «плюсу». В то же время, если на аноде каким-то образом появятся свободные положительные заряды, то они будут двигаться к «минусу», то есть к катоду.
В большинстве электровакуумных приборов, так же, как и в металлических проводниках, ток создают свободные электроны. Только они могут покинуть свои атомы и отправиться в «космический» полет от катода к аноду. Именно эти неутомимые и дисциплинированные труженики позволили создать тысячи точнейших методов и изумительных приборов, объединенных одним словом — электроника. Однако при рассмотрении электронных схем на движение электронов, как всегда, не обращают внимания, а пользуются условным направлением тока — считают, что ток протекает от «плюса» к «минусу», то есть от анода к катоду.
Описывая наш простейший электронный прибор — вакуумный баллон с двумя металлическими электродами, — мы упустили из виду одну «мелочь». Даже при большом напряжении анодной батареи — десятки и сотни вольт — анодного тока в баллоне не будет. Может быть, конечно, несколько наиболее резвых электронов прорвутся к аноду, но они погоды не делают, особенно если учесть, что из анодного тока мы хотим создать «мощную копию» усиливаемого сигнала.
Что же мешает возникновению анодного тока? Ведь в вакууме уже ничто не тормозит движения зарядов?
В вакууме электроны действительно двигаются совершенно свободно, но выйти из катода им так же трудно, как и раньше. Препятствий для выхода электронов несколько. Одно из них — это знакомое нам электронное облако (стр. 13), которое своим отрицательным зарядом отталкивает вылетающие электроды обратно к катоду.
Итак, последовательно, шаг за шагом, мы стараемся преодолеть все трудности, связанные с созданием электронного управляющего прибора. Облегчить электронам выход из катода — вот задача, которая стоит перед нами сейчас. Решается она довольно легко — катод необходимо сильно нагреть. При этом станет более интенсивным хаотическое движение электронов в металле и многие из них будут просто-напросто выпрыгивать из него. Выбрасывание электронов раскаленным катодом называется термоэлектронной эмиссией (термо — тепло, эмиссия — испускание, выбрасывание).